BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 2032145)

  • 41. Chronic granulomatous disease. Molecular genetics.
    Dinauer MC; Orkin SH
    Hematol Oncol Clin North Am; 1988 Jun; 2(2):225-40. PubMed ID: 3292508
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Affinity-labeling of an NADPH-binding site on the heavy subunit of flavocytochrome b558 in particulate NADPH oxidase from activated human neutrophils.
    Ravel P; Lederer F
    Biochem Biophys Res Commun; 1993 Oct; 196(2):543-52. PubMed ID: 8240326
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Chronic granulomatous disease.
    Thrasher AJ; Keep NH; Wientjes F; Segal AW
    Biochim Biophys Acta; 1994 Oct; 1227(1-2):1-24. PubMed ID: 7918677
    [No Abstract]   [Full Text] [Related]  

  • 44. Flow cytometric analysis of oxidase activity of neutrophils from chronic granulomatous disease patients.
    Hassan NF; Campbell DE; Douglas SD
    Adv Exp Med Biol; 1988; 239():73-8. PubMed ID: 3202042
    [No Abstract]   [Full Text] [Related]  

  • 45. Identification of a superoxide-generating NADPH oxidase system in human fibroblasts.
    Meier B; Cross AR; Hancock JT; Kaup FJ; Jones OT
    Biochem J; 1991 Apr; 275 ( Pt 1)(Pt 1):241-5. PubMed ID: 1850240
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Localization of the 47 kDa phosphoprotein involved in the respiratory-burst NADPH oxidase of phagocytic cells.
    Heyworth PG; Shrimpton CF; Segal AW
    Biochem J; 1989 May; 260(1):243-8. PubMed ID: 2775188
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Molecular basis of chronic granulomatous disease.
    Smith RM; Curnutte JT
    Blood; 1991 Feb; 77(4):673-86. PubMed ID: 1993212
    [No Abstract]   [Full Text] [Related]  

  • 48. Chronic granulomatous disease with partial deficiency of cytochrome b558 and incomplete respiratory burst: variants of the X-linked, cytochrome b558-negative form of the disease.
    Roos D; de Boer M; Borregard N; Bjerrum OW; Valerius NH; Seger RA; Mühlebach T; Belohradsky BH; Weening RS
    J Leukoc Biol; 1992 Feb; 51(2):164-71. PubMed ID: 1431553
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Aerobic and anaerobic functioning of superoxide-producing cytochrome b-559 reconstituted with phospholipids.
    Koshkin V
    Biochim Biophys Acta; 1995 Dec; 1232(3):225-9. PubMed ID: 8534675
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A novel mutation at a probable heme-binding ligand in neutrophil cytochrome b558 in atypical X-linked chronic granulomatous disease.
    Tsuda M; Kaneda M; Sakiyama T; Inana I; Owada M; Kiryu C; Shiraishi T; Kakinuma K
    Hum Genet; 1998 Oct; 103(4):377-81. PubMed ID: 9856476
    [TBL] [Abstract][Full Text] [Related]  

  • 51. The O2- -forming NADPH oxidase of the phagocytes: nature, mechanisms of activation and function.
    Rossi F
    Biochim Biophys Acta; 1986 Nov; 853(1):65-89. PubMed ID: 3021215
    [No Abstract]   [Full Text] [Related]  

  • 52. Genetic studies of three Japanese patients with p22-phox-deficient chronic granulomatous disease: detection of a possible common mutant CYBA allele in Japan and a genotype-phenotype correlation in these patients.
    Yamada M; Ariga T; Kawamura N; Ohtsu M; Imajoh-Ohmi S; Ohshika E; Tatsuzawa O; Kobayashi K; Sakiyama Y
    Br J Haematol; 2000 Mar; 108(3):511-7. PubMed ID: 10759707
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A point mutation in gp91-phox of cytochrome b558 of the human NADPH oxidase leading to defective translocation of the cytosolic proteins p47-phox and p67-phox.
    Leusen JH; de Boer M; Bolscher BG; Hilarius PM; Weening RS; Ochs HD; Roos D; Verhoeven AJ
    J Clin Invest; 1994 May; 93(5):2120-6. PubMed ID: 8182143
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The NADPH oxidase: lessons from chronic granulomatous disease neutrophils.
    Verhoeven AJ
    Ann N Y Acad Sci; 1997 Dec; 832():85-92. PubMed ID: 9704039
    [No Abstract]   [Full Text] [Related]  

  • 55. Topics in chronic granulomatous disease.
    Umeki S
    Pediatrics; 1991 Jul; 88(1):183-5. PubMed ID: 2057262
    [No Abstract]   [Full Text] [Related]  

  • 56. Plasma membrane redox activities.
    Goldenberg H
    Biochim Biophys Acta; 1982 Oct; 694(2):203-23. PubMed ID: 6753933
    [No Abstract]   [Full Text] [Related]  

  • 57. Recombinant 47-kilodalton cytosol factor restores NADPH oxidase in chronic granulomatous disease.
    Lomax KJ; Leto TL; Nunoi H; Gallin JI; Malech HL
    Science; 1989 Jul; 245(4916):409-12. PubMed ID: 2547247
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Leu505 of Nox2 is crucial for optimal p67phox-dependent activation of the flavocytochrome b558 during phagocytic NADPH oxidase assembly.
    Li XJ; Fieschi F; Paclet MH; Grunwald D; Campion Y; Gaudin P; Morel F; Stasia MJ
    J Leukoc Biol; 2007 Jan; 81(1):238-49. PubMed ID: 17060362
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Late diagnosis and advances in genetics of chronic granulomatous disease.
    Di Matteo G; Finocchi A
    Clin Exp Immunol; 2021 Feb; 203(2):244-246. PubMed ID: 33314034
    [No Abstract]   [Full Text] [Related]  

  • 60. Molecular genetics of chronic granulomatous disease.
    Orkin SH
    Annu Rev Immunol; 1989; 7():277-307. PubMed ID: 2523713
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.