These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
151 related articles for article (PubMed ID: 2032422)
81. Efficacy of the farnesyltransferase inhibitor R115777 in a rat mammary tumor model: role of Ha-ras mutations and use of microarray analysis in identifying potential targets. Yao R; Wang Y; Lu Y; Lemon WJ; End DW; Grubbs CJ; Lubet RA; You M Carcinogenesis; 2006 Jul; 27(7):1420-31. PubMed ID: 16403772 [TBL] [Abstract][Full Text] [Related]
82. Uncoupling genotoxic stress responses from circadian control increases susceptibility to mammary carcinogenesis. Fang M; Ohman Strickland PA; Kang HG; Zarbl H Oncotarget; 2017 May; 8(20):32752-32768. PubMed ID: 28427145 [TBL] [Abstract][Full Text] [Related]
83. Antitumor effect of a farnesyl protein transferase inhibitor in mammary and lymphoid tumors overexpressing N-ras in transgenic mice. Mangues R; Corral T; Kohl NE; Symmans WF; Lu S; Malumbres M; Gibbs JB; Oliff A; Pellicer A Cancer Res; 1998 Mar; 58(6):1253-9. PubMed ID: 9515813 [TBL] [Abstract][Full Text] [Related]
84. Epithelial cells up-regulate matrix metalloproteinases in cells within the same mammary carcinoma that have undergone an epithelial-mesenchymal transition. Martorana AM; Zheng G; Crowe TC; O'Grady RL; Lyons JG Cancer Res; 1998 Nov; 58(21):4970-9. PubMed ID: 9810007 [TBL] [Abstract][Full Text] [Related]
85. Chemical effects in transgenic mice bearing oncogenes expressed in mammary tissue. Tennant RW; Rao GN; Russfield A; Seilkop S; Braun AG Carcinogenesis; 1993 Jan; 14(1):29-35. PubMed ID: 8093862 [TBL] [Abstract][Full Text] [Related]
86. Frequent p53 and H-ras mutations in benzene- and ethylene oxide-induced mammary gland carcinomas from B6C3F1 mice. Houle CD; Ton TV; Clayton N; Huff J; Hong HH; Sills RC Toxicol Pathol; 2006; 34(6):752-62. PubMed ID: 17162533 [TBL] [Abstract][Full Text] [Related]
87. Enhanced synthesis of gelatinase and stromelysin by myoepithelial cells during involution of the rat mammary gland. Dickson SR; Warburton MJ J Histochem Cytochem; 1992 May; 40(5):697-703. PubMed ID: 1315355 [TBL] [Abstract][Full Text] [Related]
88. Allelic imbalance in mammary carcinomas induced by either 7,12-dimethylbenz[a]anthracene or ionizing radiation in rats carrying genes conferring differential susceptibilities to mammary carcinogenesis. Haag JD; Hsu LC; Newton MA; Gould MN Mol Carcinog; 1996 Nov; 17(3):134-43. PubMed ID: 8944073 [TBL] [Abstract][Full Text] [Related]
89. Telomerase activity in the normal and neoplastic rat mammary gland. Varon D; Jiang C; Hedican C; Dome JS; Umbricht CB; Carey LA; Thompson HJ; Sukumar S Cancer Res; 1997 Dec; 57(24):5605-9. PubMed ID: 9407974 [TBL] [Abstract][Full Text] [Related]
90. Molecular cloning of Copenhagen rat Krev-1 and rap1B cDNAs and study of their association with mammary tumor resistance in the Copenhagen rat. Hsu LC; Gould MN Carcinogenesis; 1991 Mar; 12(3):533-6. PubMed ID: 2009598 [TBL] [Abstract][Full Text] [Related]
91. Synergistic effect of MNU and DMBA in mammary carcinogenesis and H-ras activation in female Sprague-Dawley rats. Shirai K; Uemura Y; Fukumoto M; Tsukamoto T; Pascual R; Nandi S; Tsubura A Cancer Lett; 1997 Nov; 120(1):87-93. PubMed ID: 9570390 [TBL] [Abstract][Full Text] [Related]
92. Expression of messenger RNA for insulin-like growth factors and insulin-like growth factor binding proteins by experimental breast cancer and normal breast tissue in vivo. Manni A; Wei L; Badger B; Zaenglein A; Leighton J; Shimasaki S; Ling N Endocrinology; 1992 Mar; 130(3):1744-6. PubMed ID: 1371457 [TBL] [Abstract][Full Text] [Related]
93. Gelatinase B/MMP-9 in Tumour Pathogenesis and Progression. Farina AR; Mackay AR Cancers (Basel); 2014 Jan; 6(1):240-96. PubMed ID: 24473089 [TBL] [Abstract][Full Text] [Related]
94. Nf1-deficient mouse Schwann cells are angiogenic and invasive and can be induced to hyperproliferate: reversion of some phenotypes by an inhibitor of farnesyl protein transferase. Kim HA; Ling B; Ratner N Mol Cell Biol; 1997 Feb; 17(2):862-72. PubMed ID: 9001241 [TBL] [Abstract][Full Text] [Related]
95. Induction of matrix metalloproteinase 9 expression in breast carcinoma cells by a soluble factor from fibroblasts. Himelstein BP; Muschel RJ Clin Exp Metastasis; 1996 May; 14(3):197-208. PubMed ID: 8674273 [TBL] [Abstract][Full Text] [Related]
97. Matrix-degrading proteases in hormone-dependent breast cancer. Dickson RB; Shi YE; Johnson MD Breast Cancer Res Treat; 1994; 31(2-3):167-73. PubMed ID: 7881096 [TBL] [Abstract][Full Text] [Related]
98. Cyclic AMP decreases chemotaxis, invasiveness and lung colonization of H-ras transformed mouse fibroblasts. Iwamoto Y; Reich R; Nemeth G; Yamada Y; Martin GR Clin Exp Metastasis; 1993 Nov; 11(6):492-501. PubMed ID: 7693388 [TBL] [Abstract][Full Text] [Related]
99. Ras levels and metalloproteinase activity in normal versus neoplastic rat mammary tissues. Ballin M; Mackay AR; Hartzler JL; Nason A; Pelina MD; Thorgeirsson UP Clin Exp Metastasis; 1991; 9(2):179-89. PubMed ID: 2032422 [TBL] [Abstract][Full Text] [Related]
100. Metastatic ability of MXT mouse mammary subpopulations correlates with clonal expression and/or membrane-association of gelatinase A. Llorens A; Vinyals A; Alia P; López-Barcons L; Gonzalez-Garrigues M; Fabra A Mol Carcinog; 1997 May; 19(1):54-66. PubMed ID: 9180929 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]