These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
379 related articles for article (PubMed ID: 2032883)
1. Fitting of normal tissue tolerance data to an analytic function. Burman C; Kutcher GJ; Emami B; Goitein M Int J Radiat Oncol Biol Phys; 1991 May; 21(1):123-35. PubMed ID: 2032883 [TBL] [Abstract][Full Text] [Related]
2. Fitting of tissue tolerance data to analytic function: improving the therapeutic ratio. Burman CM Front Radiat Ther Oncol; 2002; 37():151-62. PubMed ID: 11764657 [TBL] [Abstract][Full Text] [Related]
3. Histogram reduction method for calculating complication probabilities for three-dimensional treatment planning evaluations. Kutcher GJ; Burman C; Brewster L; Goitein M; Mohan R Int J Radiat Oncol Biol Phys; 1991 May; 21(1):137-46. PubMed ID: 2032884 [TBL] [Abstract][Full Text] [Related]
4. A new formula for normal tissue complication probability (NTCP) as a function of equivalent uniform dose (EUD). Luxton G; Keall PJ; King CR Phys Med Biol; 2008 Jan; 53(1):23-36. PubMed ID: 18182685 [TBL] [Abstract][Full Text] [Related]
5. A numerical simulation of organ motion and daily setup uncertainties: implications for radiation therapy. Killoran JH; Kooy HM; Gladstone DJ; Welte FJ; Beard CJ Int J Radiat Oncol Biol Phys; 1997 Jan; 37(1):213-21. PubMed ID: 9054898 [TBL] [Abstract][Full Text] [Related]
6. [The interactive determination of the mathematical model parameters for the planning of the radiation therapy of malignant tumors. 2. A method of adjusting the mathematical model parameters for calculating the tolerance doses and probabilities of the occurrence of radiation complications in body organs and tissues]. Klepper LIa Med Tekh; 2000; (5):36-40. PubMed ID: 11076364 [TBL] [Abstract][Full Text] [Related]
7. Estimation of pneumonitis risk in three-dimensional treatment planning using dose-volume histogram analysis. Oetzel D; Schraube P; Hensley F; Sroka-Pérez G; Menke M; Flentje M Int J Radiat Oncol Biol Phys; 1995 Sep; 33(2):455-60. PubMed ID: 7673033 [TBL] [Abstract][Full Text] [Related]
8. Complication probability as assessed from dose-volume histograms. Lyman JT Radiat Res Suppl; 1985; 8():S13-9. PubMed ID: 3867079 [TBL] [Abstract][Full Text] [Related]
9. Response-probability volume histograms and iso-probability of response charts in treatment plan evaluation. Mavroidis P; Ferreira BC; Lopes Mdo C Med Phys; 2011 May; 38(5):2382-97. PubMed ID: 21776773 [TBL] [Abstract][Full Text] [Related]
10. Quantitative dose-volume response analysis of changes in parotid gland function after radiotherapy in the head-and-neck region. Roesink JM; Moerland MA; Battermann JJ; Hordijk GJ; Terhaard CH Int J Radiat Oncol Biol Phys; 2001 Nov; 51(4):938-46. PubMed ID: 11704314 [TBL] [Abstract][Full Text] [Related]
12. [Interactive determination of the parameters of mathematical models for planning radiotherapy of malignant tumors. I. Mathematical models for calculating dose tolerance, adequate doses and the likelihood of development of radiation complications in normal organs and tissues]. Klepper LIa Med Tekh; 2000; (4):37-41. PubMed ID: 10984881 [TBL] [Abstract][Full Text] [Related]
13. Probability of radiation-induced complications in normal tissues with parallel architecture under conditions of uniform whole or partial organ irradiation. Yorke ED; Kutcher GJ; Jackson A; Ling CC Radiother Oncol; 1993 Mar; 26(3):226-37. PubMed ID: 8316652 [TBL] [Abstract][Full Text] [Related]
14. Clinical comparative study of dose-volume and equivalent uniform dose based predictions in post radiotherapy acute complications. Boulé TP; Gallardo Fuentes MI; Roselló JV; Arrans Lara R; Torrecilla JL; Plaza AL Acta Oncol; 2009; 48(7):1044-53. PubMed ID: 19575313 [TBL] [Abstract][Full Text] [Related]
15. Characterization of dose distributions through the max and mean dose concept. Thieke C; Bortfeld T; Küfer KH Acta Oncol; 2002; 41(2):158-61. PubMed ID: 12102160 [TBL] [Abstract][Full Text] [Related]
16. The use of 3-D dose volume analysis to predict radiation hepatitis. Lawrence TS; Ten Haken RK; Kessler ML; Robertson JM; Lyman JT; Lavigne ML; Brown MB; DuRoss DJ; Andrews JC; Ensminger WD Int J Radiat Oncol Biol Phys; 1992; 23(4):781-8. PubMed ID: 1618671 [TBL] [Abstract][Full Text] [Related]
17. Influence of patient positioning on dose-volume histogram and normal tissue complication probability for small bowel and bladder in patients receiving pelvic irradiation: a prospective study using a 3D planning system and a radiobiological model. Koelbl O; Richter S; Flentje M Int J Radiat Oncol Biol Phys; 1999 Dec; 45(5):1193-8. PubMed ID: 10613312 [TBL] [Abstract][Full Text] [Related]
18. A simple method to calculate the influence of dose inhomogeneity and fractionation in normal tissue complication probability evaluation. Begnozzi L; Gentile FP; Di Nallo AM; Chiatti L; Zicari C; Consorti R; Benassi M Strahlenther Onkol; 1994 Oct; 170(10):590-4. PubMed ID: 7974170 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional radiation treatment planning study for patients with carcinoma of the lung. Graham MV; Matthews JW; Harms WB; Emami B; Glazer HS; Purdy JA Int J Radiat Oncol Biol Phys; 1994 Jul; 29(5):1105-17. PubMed ID: 8083080 [TBL] [Abstract][Full Text] [Related]
20. Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. Kutcher GJ; Burman C Int J Radiat Oncol Biol Phys; 1989 Jun; 16(6):1623-30. PubMed ID: 2722599 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]