These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 20329521)

  • 1. [Flaw of demand coverage based method for optimal locations of monitoring stations and modification].
    Liu SM; Li ZY; Chen JD; Wang Q; Meng FL
    Huan Jing Ke Xue; 2010 Jan; 31(1):88-92. PubMed ID: 20329521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locations of Sampling Stations for Water Quality Monitoring in Water Distribution Networks.
    Rathi S; Gupta R
    J Environ Sci Eng; 2014 Apr; 56(2):169-78. PubMed ID: 26563063
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal monitoring and management of a water storage.
    Ioslovich I; Gutman PO
    Environ Monit Assess; 2008 Mar; 138(1-3):93-100. PubMed ID: 17665146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pollutant intrusion modeling in water distribution networks using artificial neural networks.
    Singh RM; Rahul AI
    J Environ Sci Eng; 2011 Jul; 53(3):245-56. PubMed ID: 23029924
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of river water quality monitoring stations by principal component analysis.
    Ouyang Y
    Water Res; 2005 Jul; 39(12):2621-35. PubMed ID: 15993926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pollution source localization in an urban water supply network based on dynamic water demand.
    Yan X; Zhu Z; Li T
    Environ Sci Pollut Res Int; 2019 Jun; 26(18):17901-17910. PubMed ID: 29079984
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-objective, decision-based assessment of a water quality monitoring network in a river system.
    Ning SK; Chang NB
    J Environ Monit; 2002 Feb; 4(1):121-6. PubMed ID: 11871692
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimal space-time coverage and exploration costs in groundwater monitoring networks.
    Nunes LM; Cunha MC; Ribeiro L
    Environ Monit Assess; 2004; 93(1-3):103-24. PubMed ID: 15074612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The influence of artificial cutoff on a monitoring system and the water quality of the Keelung River.
    Lo SL; Kuo JT; Wang SM
    Water Sci Technol; 2002; 46(11-12):231-6. PubMed ID: 12523759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optimal expansion of water quality monitoring network by fuzzy optimization approach.
    Ning SK; Chang NB
    Environ Monit Assess; 2004 Feb; 91(1-3):145-70. PubMed ID: 14969441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Method for optimal sensor placement in water distribution systems with nodal demand uncertainties].
    Liu SM; Wu X; Ouyang LY
    Huan Jing Ke Xue; 2013 Aug; 34(8):3108-12. PubMed ID: 24191555
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of a decision-making methodology to design a water quality monitoring network.
    Keum J; Kaluarachchi JJ
    Environ Monit Assess; 2015 Jul; 187(7):466. PubMed ID: 26113203
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal water quality monitoring network design for river systems.
    Telci IT; Nam K; Guan J; Aral MM
    J Environ Manage; 2009 Jul; 90(10):2987-98. PubMed ID: 19501953
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllability analysis as a pre-selection method for sensor placement in water distribution systems.
    Diao K; Rauch W
    Water Res; 2013 Oct; 47(16):6097-108. PubMed ID: 23948563
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of real-time data in environmental monitoring: current practices.
    Gunatilak A; Dreher J
    Water Sci Technol; 2003; 47(2):53-61. PubMed ID: 12636062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An eco-environmental water demand based model for optimising water resources using hybrid genetic simulated annealing algorithms. Part I. Model development.
    Wang X; Sun Y; Song L; Mei C
    J Environ Manage; 2009 Jun; 90(8):2628-35. PubMed ID: 19269735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial assessment of Langat River water quality using chemometrics.
    Juahir H; Zain SM; Aris AZ; Yusoff MK; Mokhtar MB
    J Environ Monit; 2010 Jan; 12(1):287-95. PubMed ID: 20082024
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient method for optimal placing of water quality monitoring stations for an ungauged basin.
    Lee C; Paik K; Yoo do G; Kim JH
    J Environ Manage; 2014 Jan; 132():24-31. PubMed ID: 24269932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Critical Location Spatial-Temporal Coverage Optimization in Visual Sensor Network.
    Xiong Y; Li J; Lu M
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31547560
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Network hydraulics inclusion in water quality event detection using multiple sensor stations data.
    Oliker N; Ostfeld A
    Water Res; 2015 Sep; 80():47-58. PubMed ID: 25996752
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.