BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 2032959)

  • 1. Cochlear microphonic enhancement in two tone interactions.
    Nuttall AL; Dolan DF
    Hear Res; 1991 Feb; 51(2):235-45. PubMed ID: 2032959
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Loud sound-induced changes in cochlear mechanics.
    Fridberger A; Zheng J; Parthasarathi A; Ren T; Nuttall A
    J Neurophysiol; 2002 Nov; 88(5):2341-8. PubMed ID: 12424275
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-tone interactions in the cochlear microphonic.
    Cheatham MA; Dallos P
    Hear Res; 1982 Sep; 8(1):29-48. PubMed ID: 7142031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrophysiological properties of cochlear implantation in the gerbil using a flexible array.
    DeMason C; Choudhury B; Ahmad F; Fitzpatrick DC; Wang J; Buchman CA; Adunka OF
    Ear Hear; 2012; 33(4):534-42. PubMed ID: 22436408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermodulation components in inner hair cell and organ of Corti responses.
    Cheatham MA; Dallos P
    J Acoust Soc Am; 1997 Aug; 102(2 Pt 1):1038-48. PubMed ID: 9265752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Low-frequency modulation of inner hair cell and organ of Corti responses in the guinea pig cochlea.
    Cheatham MA; Dallos P
    Hear Res; 1997 Jun; 108(1-2):191-212. PubMed ID: 9213131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sound induced displacement response of the guinea pig hearing organ and its relation to the cochlear potentials.
    Brundin L; Flock B; Flock A
    Hear Res; 1992 Mar; 58(2):175-84. PubMed ID: 1568939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The origin of the low-frequency microphonic in the first cochlear turn of guinea-pig.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):177-88. PubMed ID: 2737964
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-frequency characteristics of intracellularly recorded receptor potentials in guinea-pig cochlear hair cells.
    Russell IJ; Sellick PM
    J Physiol; 1983 May; 338():179-206. PubMed ID: 6875955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of altering organ of Corti on cochlear distortion products f2 - f1 and 2f1 - f2.
    Siegel JH; Kim DO; Molnar CE
    J Neurophysiol; 1982 Feb; 47(2):303-28. PubMed ID: 7062102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The location of the cochlear amplifier: spatial representation of a single tone on the guinea pig basilar membrane.
    Russell IJ; Nilsen KE
    Proc Natl Acad Sci U S A; 1997 Mar; 94(6):2660-4. PubMed ID: 9122252
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Saturation of outer hair cell receptor currents causes two-tone suppression.
    Geisler CD; Yates GK; Patuzzi RB; Johnstone BM
    Hear Res; 1990 Mar; 44(2-3):241-56. PubMed ID: 2329097
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A comparison of compound action potential and cochlear microphonic two-tone suppression in the guinea pig.
    Remond MC; Harrison RV; Legouix JP
    Hear Res; 1982 Sep; 8(1):83-91. PubMed ID: 7142036
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cochlear vascular and electrophysiological effects in the guinea pig to 4 kHz pure tones of different durations and intensities.
    Vertes D; Axelsson A; Miller J; Lidén G
    Acta Otolaryngol; 1981; 92(1-2):15-24. PubMed ID: 7315247
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Methods for integrating fluorimetry in the study of hearing organ structure and function.
    Flock A; Flock B; Fridberger A; Jäger W
    Hear Res; 1997 Apr; 106(1-2):29-38. PubMed ID: 9112105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transient changes in cochlear potentials and DPOAEs after low-frequency tones: the 'two-minute bounce' revisited.
    Kirk DL; Patuzzi RB
    Hear Res; 1997 Oct; 112(1-2):49-68. PubMed ID: 9367229
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of the nonlinearity governing even-order distortion products in cochlear potentials.
    van Emst MG; Klis SF; Smoorenburg GF
    Hear Res; 1997 Dec; 114(1-2):93-101. PubMed ID: 9447923
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Estimating the operating point of the cochlear transducer using low-frequency biased distortion products.
    Brown DJ; Hartsock JJ; Gill RM; Fitzgerald HE; Salt AN
    J Acoust Soc Am; 2009 Apr; 125(4):2129-45. PubMed ID: 19354389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nimodipine, an L-channel Ca2+ antagonist, reverses the negative summating potential recorded from the guinea pig cochlea.
    Bobbin RP; Jastreboff PJ; Fallon M; Littman T
    Hear Res; 1990 Jul; 46(3):277-87. PubMed ID: 2168361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The temperature dependency of neural and hair cell responses evoked by high frequencies.
    Brown MC; Smith DI; Nuttall AL
    J Acoust Soc Am; 1983 May; 73(5):1662-70. PubMed ID: 6863743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.