BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 2032959)

  • 21. The responses of inner hair cells to basilar membrane velocity during low frequency auditory stimulation in the guinea pig cochlea.
    Sellick PM; Russell IJ
    Hear Res; 1980 Jun; 2(3-4):439-45. PubMed ID: 7410248
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automatic monitoring of mechano-electrical transduction in the guinea pig cochlea.
    Patuzzi R; Moleirinho A
    Hear Res; 1998 Nov; 125(1-2):1-16. PubMed ID: 9833960
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Using a concha electrode to measure response patterns based on the amplitudes of cochlear microphonic waveforms across acoustic frequencies in normal-hearing subjects.
    Zhang M
    Ear Hear; 2015 Jan; 36(1):53-60. PubMed ID: 25083598
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Effects of acoustic overstimulation of 2F1-F2 distortion product in cochlear microphonics].
    Yoshida M; Aoyagi M; Makishima K
    Nihon Jibiinkoka Gakkai Kaiho; 1994 Apr; 97(4):680-3. PubMed ID: 8189316
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Constructing a cochlear transducer function from the summating potential using a low-frequency bias tone.
    Choi CH; Chertoff ME; Bian L; Lerner D
    J Acoust Soc Am; 2004 Nov; 116(5):2996-3007. PubMed ID: 15603145
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Displacements of the organ of Corti by gel injections into the cochlear apex.
    Salt AN; Brown DJ; Hartsock JJ; Plontke SK
    Hear Res; 2009 Apr; 250(1-2):63-75. PubMed ID: 19217935
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Voltage-dependent elements are involved in the generation of the cochlear microphonic and the sound-induced resistance changes measured in scala media of the guinea pig.
    Mountain DC; Hubbard AE; Geisler CD
    Hear Res; 1980 Oct; 3(3):215-29. PubMed ID: 7440425
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma.
    Patuzzi RB; Yates GK; Johnstone BM
    Hear Res; 1989 May; 39(1-2):189-202. PubMed ID: 2737965
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comparison of the spectra of the cochlear microphonic and of the sound-elicited electrical impedance changes measured in scala media of the guinea pig.
    Hubbard AE; Geisler CD; Mountain DC
    J Acoust Soc Am; 1979 Aug; 66(2):431-45. PubMed ID: 512204
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Stimulus biasing: a comparison between cochlear hair cell and organ of Corti response patterns.
    Cheatham MA; Dallos P
    Hear Res; 1994 May; 75(1-2):103-13. PubMed ID: 8071136
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microphonic and DPOAE measurements suggest a micromechanical mechanism for the 'bounce' phenomenon following low-frequency tones.
    Kirk DL; Moleirinho A; Patuzzi RB
    Hear Res; 1997 Oct; 112(1-2):69-86. PubMed ID: 9367230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cochlear mechanisms of frequency and intensity coding. I. The place code for pitch.
    Chatterjee M; Zwislocki JJ
    Hear Res; 1997 Sep; 111(1-2):65-75. PubMed ID: 9307312
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cochlear nonlinear phenomena in two-tone responses.
    Kim DO; Siegel JH; Molnar CE
    Scand Audiol Suppl; 1979; (9):63-81. PubMed ID: 294691
    [No Abstract]   [Full Text] [Related]  

  • 34. Brief report: the cochlear microphonic as an indication of outer hair cell function.
    Withnell RH
    Ear Hear; 2001 Feb; 22(1):75-7. PubMed ID: 11271978
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voltage responses to tones of outer hair cells in the basal turn of the guinea-pig cochlea: significance for electromotility and desensitization.
    Russell IJ; Kössl M
    Proc Biol Sci; 1992 Feb; 247(1319):97-105. PubMed ID: 1349187
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Estimating mechanical responses to pulsatile electrical stimulation of the cochlea.
    McAnally KI; Brown M; Clark GM
    Hear Res; 1997 Apr; 106(1-2):146-53. PubMed ID: 9112114
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cochlear microphonic responses to acoustic clicks in guinea pig and their relation with microphonic responses to pure tones.
    Echeverría EL; Robles LW
    J Acoust Soc Am; 1983 Feb; 73(2):592-601. PubMed ID: 6841799
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cochlear Implant Stimulation of a Hearing Ear Generates Separate Electrophonic and Electroneural Responses.
    Sato M; Baumhoff P; Kral A
    J Neurosci; 2016 Jan; 36(1):54-64. PubMed ID: 26740649
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Further studies on the mechanics of the cochlear partition in the mustached bat. II. A second cochlear frequency map derived from acoustic distortion products.
    Kössl M; Vater M
    Hear Res; 1996 May; 94(1-2):78-86. PubMed ID: 8789813
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Cochlear efferent neurones and protection against acoustic trauma: protection of outer hair cell receptor current and interanimal variability.
    Patuzzi RB; Thompson ML
    Hear Res; 1991 Jul; 54(1):45-58. PubMed ID: 1917716
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.