These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 20329709)

  • 1. Squeeze-film hydrogel deposition and dry micropatterning.
    Ding Z; Salim A; Ziaie B
    Anal Chem; 2010 Apr; 82(8):3377-82. PubMed ID: 20329709
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protein functionalized micro hydrogel features for cell-surface interaction.
    Bhatnagar P; Nixon AJ; Kim I; Kameoka J
    Biomed Microdevices; 2008 Aug; 10(4):567-71. PubMed ID: 18259869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tensile film stress of parylene deposited on liquid.
    Nguyen BK; Matsumoto K; Shimoyama I
    Langmuir; 2010 Dec; 26(24):18771-5. PubMed ID: 21080655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protection of sensors for biological applications by photoinitiated chemical vapor deposition of hydrogel thin films.
    Baxamusa SH; Montero L; Dubach JM; Clark HA; Borros S; Gleason KK
    Biomacromolecules; 2008 Oct; 9(10):2857-62. PubMed ID: 18783272
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogel films and coatings by swelling-induced gelation.
    Moreau D; Chauvet C; Etienne F; Rannou FP; Corté L
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):13295-13300. PubMed ID: 27821765
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assembly of polystyrene microspheres and its application in cell micropatterning.
    Yap FL; Zhang Y
    Biomaterials; 2007 May; 28(14):2328-38. PubMed ID: 17306366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photopatterning of ultrathin electrochemiluminescent redox hydrogel films.
    Milutinovic M; Suraniti E; Studer V; Mano N; Manojlovic D; Sojic N
    Chem Commun (Camb); 2011 Aug; 47(32):9125-7. PubMed ID: 21738936
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Encapsulation of an integrated neural interface device with Parylene C.
    Hsu JM; Rieth L; Normann RA; Tathireddy P; Solzbacher F
    IEEE Trans Biomed Eng; 2009 Jan; 56(1):23-9. PubMed ID: 19224715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature selective deposition of Parylene-C.
    Charlson EM; Charlson EJ; Sabeti R
    IEEE Trans Biomed Eng; 1992 Feb; 39(2):202-6. PubMed ID: 1612624
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of static and dynamic patterned co-cultures using microfabricated parylene-C stencils.
    Wright D; Rajalingam B; Selvarasah S; Dokmeci MR; Khademhosseini A
    Lab Chip; 2007 Oct; 7(10):1272-9. PubMed ID: 17896010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Guided growth of neurons and glia using microfabricated patterns of parylene-C on a SiO2 background.
    Delivopoulos E; Murray AF; MacLeod NK; Curtis JC
    Biomaterials; 2009 Apr; 30(11):2048-58. PubMed ID: 19138795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Large-area patterning of coinage-metal thin films using decal transfer lithography.
    Childs WR; Nuzzo RG
    Langmuir; 2005 Jan; 21(1):195-202. PubMed ID: 15620303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Infra-red laser ablative micromachining of parylene-C on SiO2 substrates for rapid prototyping, high yield, human neuronal cell patterning.
    Raos BJ; Unsworth CP; Costa JL; Rohde CA; Doyle CS; Bunting AS; Delivopoulos E; Murray AF; Dickinson ME; Simpson MC; Graham ES
    Biofabrication; 2013 Jun; 5(2):025006. PubMed ID: 23466346
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A simple method for micropatterning nanofibrous hydrogel film.
    Higashi K; Miki N
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():145-148. PubMed ID: 28268300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Positive and negative TiO2 micropatterns on organic polymer substrates.
    Yang P; Yang M; Zou S; Xie J; Yang W
    J Am Chem Soc; 2007 Feb; 129(6):1541-52. PubMed ID: 17243675
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed assembly of high density single-walled carbon nanotube patterns on flexible polymer substrates.
    Xiong X; Chen CL; Ryan P; Busnaina AA; Jung YJ; Dokmeci MR
    Nanotechnology; 2009 Jul; 20(29):295302. PubMed ID: 19567952
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Photoinduced phospholipid polymer grafting on Parylene film: advanced lubrication and antibiofouling properties.
    Goda T; Konno T; Takai M; Ishihara K
    Colloids Surf B Biointerfaces; 2007 Jan; 54(1):67-73. PubMed ID: 17137760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cell and protein compatibility of parylene-C surfaces.
    Chang TY; Yadav VG; De Leo S; Mohedas A; Rajalingam B; Chen CL; Selvarasah S; Dokmeci MR; Khademhosseini A
    Langmuir; 2007 Nov; 23(23):11718-25. PubMed ID: 17915896
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micrometric Wrinkled Patterns Spontaneously Formed on Hydrogel Thin Films via Argon Plasma Exposure.
    González-Henríquez CM; Veliz-Silva DF; Sarabia-Vallejos MA; Del Campo-García A; Rodríguez-Hernández J
    Molecules; 2019 Feb; 24(4):. PubMed ID: 30791473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformal coating using parylene polymers.
    Noordegraaf J
    Med Device Technol; 1997; 8(1):14-20. PubMed ID: 10167681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.