These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 20329742)

  • 1. Microglial response to gold nanoparticles.
    Hutter E; Boridy S; Labrecque S; Lalancette-Hébert M; Kriz J; Winnik FM; Maysinger D
    ACS Nano; 2010 May; 4(5):2595-606. PubMed ID: 20329742
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lipopolysaccharide-QD micelles induce marked induction of TLR2 and lipid droplet accumulation in olfactory bulb microglia.
    Lalancette-Hébert M; Moquin A; Choi AO; Kriz J; Maysinger D
    Mol Pharm; 2010 Aug; 7(4):1183-94. PubMed ID: 20459083
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rough around the edges: the inflammatory response of microglial cells to spiky nanoparticles.
    Albanese A; Sykes EA; Chan WC
    ACS Nano; 2010 May; 4(5):2490-3. PubMed ID: 20496953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organotypic and primary neural cultures as models to assess effects of different gold nanostructures on glia and neurons.
    Ji J; Moquin A; Bertorelle F; Ky Chang P; Antoine R; Luo J; McKinney RA; Maysinger D
    Nanotoxicology; 2019 Apr; 13(3):285-304. PubMed ID: 30691378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Saturated fatty acids activate microglia via Toll-like receptor 4/NF-κB signalling.
    Wang Z; Liu D; Wang F; Liu S; Zhao S; Ling EA; Hao A
    Br J Nutr; 2012 Jan; 107(2):229-41. PubMed ID: 21733316
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Completely dispersible PEGylated gold nanoparticles under physiological conditions: modification of gold nanoparticles with precisely controlled PEG-b-polyamine.
    Miyamoto D; Oishi M; Kojima K; Yoshimoto K; Nagasaki Y
    Langmuir; 2008 May; 24(9):5010-7. PubMed ID: 18386943
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonendosomal cellular uptake of ligand-free, positively charged gold nanoparticles.
    Taylor U; Klein S; Petersen S; Kues W; Barcikowski S; Rath D
    Cytometry A; 2010 May; 77(5):439-46. PubMed ID: 20104575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of gold nanoparticles and nickel(II) sulfate affects dendritic cell maturation.
    Deville S; Baré B; Piella J; Tirez K; Hoet P; Monopoli MP; Dawson KA; Puntes VF; Nelissen I
    Nanotoxicology; 2016 Dec; 10(10):1395-1403. PubMed ID: 27550382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microglial activation, recruitment and phagocytosis as linked phenomena in ferric oxide nanoparticle exposure.
    Wang Y; Wang B; Zhu MT; Li M; Wang HJ; Wang M; Ouyang H; Chai ZF; Feng WY; Zhao YL
    Toxicol Lett; 2011 Aug; 205(1):26-37. PubMed ID: 21596115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly purified lipoteichoic acid induced pro-inflammatory signalling in primary culture of rat microglia through Toll-like receptor 2: selective potentiation of nitric oxide production by muramyl dipeptide.
    Kinsner A; Boveri M; Hareng L; Brown GC; Coecke S; Hartung T; Bal-Price A
    J Neurochem; 2006 Oct; 99(2):596-607. PubMed ID: 16879708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface chemistry governs the sub-organ transfer, clearance and toxicity of functional gold nanoparticles in the liver and kidney.
    Li X; Wang B; Zhou S; Chen W; Chen H; Liang S; Zheng L; Yu H; Chu R; Wang M; Chai Z; Feng W
    J Nanobiotechnology; 2020 Mar; 18(1):45. PubMed ID: 32169073
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparative analysis of stability and toxicity profile of three differently capped gold nanoparticles for biomedical usage.
    Das S; Debnath N; Mitra S; Datta A; Goswami A
    Biometals; 2012 Oct; 25(5):1009-22. PubMed ID: 22752843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparative toxicity evaluation of flower-shaped and spherical gold nanoparticles on human endothelial cells.
    Sultana S; Djaker N; Boca-Farcau S; Salerno M; Charnaux N; Astilean S; Hlawaty H; de la Chapelle ML
    Nanotechnology; 2015 Feb; 26(5):055101. PubMed ID: 25573907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microglia Induce Neurotoxic IL-17+ γδ T Cells Dependent on TLR2, TLR4, and TLR9 Activation.
    Derkow K; Krüger C; Dembny P; Lehnardt S
    PLoS One; 2015; 10(8):e0135898. PubMed ID: 26288016
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential role of Dok1 and Dok2 in TLR2-induced inflammatory signaling in glia.
    Downer EJ; Johnston DG; Lynch MA
    Mol Cell Neurosci; 2013 Sep; 56():148-58. PubMed ID: 23659921
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation and characterization of a microglial cell line, MG5, derived from a p53-deficient mouse.
    Ohsawa K; Imai Y; Nakajima K; Kohsaka S
    Glia; 1997 Nov; 21(3):285-98. PubMed ID: 9383038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the cell uptake mechanism of phospholipid and polyethylene glycol coated gold nanoparticles.
    Hao Y; Yang X; Song S; Huang M; He C; Cui M; Chen J
    Nanotechnology; 2012 Feb; 23(4):045103. PubMed ID: 22222168
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Four types of inorganic nanoparticles stimulate the inflammatory reaction in brain microglia and damage neurons in vitro.
    Xue Y; Wu J; Sun J
    Toxicol Lett; 2012 Oct; 214(2):91-8. PubMed ID: 22939914
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cytokine responses induced by Toxoplasma gondii in astrocytes and microglial cells.
    Fischer HG; Nitzgen B; Reichmann G; Hadding U
    Eur J Immunol; 1997 Jun; 27(6):1539-48. PubMed ID: 9209508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alpha-tocopherol (vitamin E) induces rapid, nonsustained proliferation in cultured rat microglia.
    Flanary BE; Streit WJ
    Glia; 2006 Apr; 53(6):669-74. PubMed ID: 16419088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.