These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 20329754)

  • 1. Fabrication of versatile channel flow cells for quantitative electroanalysis using prototyping.
    Snowden ME; King PH; Covington JA; Macpherson JV; Unwin PR
    Anal Chem; 2010 Apr; 82(8):3124-31. PubMed ID: 20329754
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of an all-diamond tubular flow microelectrode for electroanalysis.
    Hutton LA; Vidotti M; Iacobini JG; Kelly C; Newton ME; Unwin PR; Macpherson JV
    Anal Chem; 2011 Jul; 83(14):5804-8. PubMed ID: 21644592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theory and experiments of transport at channel microband electrodes under laminar flow. 3. Electrochemical detection at electrode arrays under steady state.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2010 Mar; 82(6):2434-40. PubMed ID: 20184349
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A cyclo olefin polymer microfluidic chip with integrated gold microelectrodes for aqueous and non-aqueous electrochemistry.
    Illa X; Ordeig O; Snakenborg D; Romano-Rodríguez A; Compton RG; Kutter JP
    Lab Chip; 2010 May; 10(10):1254-61. PubMed ID: 20445877
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fully integrated three-dimensional electrodes for electrochemical detection in microchips: fabrication, characterization, and applications.
    Pai RS; Walsh KM; Crain MM; Roussel TJ; Jackson DJ; Baldwin RP; Keynton RS; Naber JF
    Anal Chem; 2009 Jun; 81(12):4762-9. PubMed ID: 19459620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrochemical oxidation of oxalic acid at highly boron-doped diamond electrodes.
    Ivandini TA; Rao TN; Fujishima A; Einaga Y
    Anal Chem; 2006 May; 78(10):3467-71. PubMed ID: 16689551
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrochemical determination of flow velocity profile in a microfluidic channel from steady-state currents: numerical approach and optimization of electrode layout.
    Amatore C; Klymenko OV; Oleinick AI; Svir I
    Anal Chem; 2009 Sep; 81(18):7667-76. PubMed ID: 19697937
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A microfluidic fuel cell with flow-through porous electrodes.
    Kjeang E; Michel R; Harrington DA; Djilali N; Sinton D
    J Am Chem Soc; 2008 Mar; 130(12):4000-6. PubMed ID: 18314983
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of carbon microelectrodes with a micromolding technique and their use in microchip-based flow analyses.
    Kovarik ML; Torrence NJ; Spence DM; Martin RS
    Analyst; 2004 May; 129(5):400-5. PubMed ID: 15116230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical oxidation of N-nitrosodimethylamine with boron-doped diamond film electrodes.
    Chaplin BP; Schrader G; Farrell J
    Environ Sci Technol; 2009 Nov; 43(21):8302-7. PubMed ID: 19924960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational change detection in nonmetal proteins by direct electrochemical oxidation using diamond electrodes.
    Chiku M; Nakamura J; Fujishima A; Einaga Y
    Anal Chem; 2008 Aug; 80(15):5783-7. PubMed ID: 18613649
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-channel peristaltic pump for microfluidic applications featuring monolithic PDMS inlay.
    Skafte-Pedersen P; Sabourin D; Dufva M; Snakenborg D
    Lab Chip; 2009 Oct; 9(20):3003-6. PubMed ID: 19789757
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Examination of the spatially heterogeneous electroactivity of boron-doped diamond microarray electrodes.
    Colley AL; Williams CG; D'Haenens Johansson U; Newton ME; Unwin PR; Wilson NR; Macpherson JV
    Anal Chem; 2006 Apr; 78(8):2539-48. PubMed ID: 16615762
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A microfluidic channel flow cell for electrochemical ESR.
    Wain AJ; Compton RG; Le Roux R; Matthews S; Yunus K; Fisher AC
    J Phys Chem B; 2006 Dec; 110(51):26040-4. PubMed ID: 17181255
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of boron-doped diamond nanorod forest electrodes and their application in nonenzymatic amperometric glucose biosensing.
    Luo D; Wu L; Zhi J
    ACS Nano; 2009 Aug; 3(8):2121-8. PubMed ID: 19621936
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoskiving: a new method to produce arrays of nanostructures.
    Xu Q; Rioux RM; Dickey MD; Whitesides GM
    Acc Chem Res; 2008 Dec; 41(12):1566-77. PubMed ID: 18646870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrochemical oxidation of trichloroethylene using boron-doped diamond film electrodes.
    Carter KE; Farrell J
    Environ Sci Technol; 2009 Nov; 43(21):8350-4. PubMed ID: 19924968
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory and experiments of transport at channel microband electrodes under laminar flows. 1. Steady-state regimes at a single electrode.
    Amatore C; Da Mota N; Sella C; Thouin L
    Anal Chem; 2007 Nov; 79(22):8502-10. PubMed ID: 17939744
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices.
    Park JJ; Luo X; Yi H; Valentine TM; Payne GF; Bentley WE; Ghodssi R; Rubloff GW
    Lab Chip; 2006 Oct; 6(10):1315-21. PubMed ID: 17102845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theory and experiments of transport at channel microband electrodes under laminar flows. 2. Electrochemical regimes at double microband assemblies under steady state.
    Amatore C; Da Mota N; Lemmer C; Pebay C; Sella C; Thouin L
    Anal Chem; 2008 Dec; 80(24):9483-90. PubMed ID: 19007242
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.