These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 20329846)

  • 1. Using a reflection model for modeling the dynamic feedback path of digital hearing aids.
    Ma G; Gran F; Jacobsen F; Agerkvist F
    J Acoust Soc Am; 2010 Mar; 127(3):1458-68. PubMed ID: 20329846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extracting the invariant model from the feedback paths of digital hearing aids.
    Ma G; Gran F; Jacobsen F; Agerkvist F
    J Acoust Soc Am; 2011 Jul; 130(1):350-63. PubMed ID: 21786904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of feedback reduction techniques in hearing aids based on physical performance measures.
    Spriet A; Moonen M; Wouters J
    J Acoust Soc Am; 2010 Sep; 128(3):1245-61. PubMed ID: 20815460
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study on the applicability of instrumental measures for black-box evaluation of static feedback control in hearing aids.
    Madhu N; Wouters J; Spriet A; Bisitz T; Hohmann V; Moonen M
    J Acoust Soc Am; 2011 Aug; 130(2):933-47. PubMed ID: 21877807
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acoustic feedback path modeling for hearing aids: Comparison of physical position based and position independent models.
    Sankowsky-Rothe T; Schepker H; Doclo S; Blau M
    J Acoust Soc Am; 2020 Jan; 147(1):85. PubMed ID: 32006989
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Adaptive feedback stabilization of hearing aids.
    Engebretson AM; French-St George M; O'Connell MP
    Scand Audiol Suppl; 1993; 38():56-64. PubMed ID: 8153565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulated real-ear measurements of benefit from digital feedback suppression.
    Olsen SØ
    Int J Audiol; 2008 Feb; 47(2):51-8. PubMed ID: 18236236
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive feedback cancellation in hearing aids with clipping in the feedback path.
    Freed DJ
    J Acoust Soc Am; 2008 Mar; 123(3):1618-26. PubMed ID: 18345849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Using a signal cancellation technique involving impulse response to assess directivity of hearing aids.
    Wu YH; Bentler RA
    J Acoust Soc Am; 2009 Dec; 126(6):3214-26. PubMed ID: 20000935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reciprocal measurement of acoustic feedback paths in hearing aids.
    Sankowsky-Rothe T; Blau M; Schepker H; Doclo S
    J Acoust Soc Am; 2015 Oct; 138(4):EL399-404. PubMed ID: 26520351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Properties of an adaptive feedback equalization algorithm.
    Engebretson AM; French-St George M
    J Rehabil Res Dev; 1993; 30(1):8-16. PubMed ID: 8263831
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ICRA noises: artificial noise signals with speech-like spectral and temporal properties for hearing instrument assessment. International Collegium for Rehabilitative Audiology.
    Dreschler WA; Verschuure H; Ludvigsen C; Westermann S
    Audiology; 2001; 40(3):148-57. PubMed ID: 11465297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of measurements of the characteristics of directional microphone hearing aids in an IAC test room and an anechoic chamber.
    Brey RH; Caustin EI; McPherson JH
    J Am Audiol Soc; 1977; 2(5):173-81. PubMed ID: 853009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Modeling of Acoustic Feedback Path in Hearing Aids by Voice Activity Detector-Supervised Multiple Noise Injections.
    Mishra P; Tokgoz S; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3549-3552. PubMed ID: 30441145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Client-based adjustments of hearing aid gain: the effect of different control configurations.
    Dreschler WA; Keidser G; Convery E; Dillon H
    Ear Hear; 2008 Apr; 29(2):214-27. PubMed ID: 18490863
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Real-Time Acoustic Feedback Cancellation using Adaptive Noise Injection Algorithm.
    Patel K; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():972-975. PubMed ID: 33018147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wind noise in hearing aids with directional and omnidirectional microphones: polar characteristics of behind-the-ear hearing aids.
    Chung K; Mongeau L; McKibben N
    J Acoust Soc Am; 2009 Apr; 125(4):2243-59. PubMed ID: 19354400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Directional hearing aid based on array technology.
    Soede W; Bilsen FA; Berkhout AJ; Verschuure J
    Scand Audiol Suppl; 1993; 38():20-7. PubMed ID: 8153561
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tutorial paper:principles and characteristics of automatic gain control hearing aids.
    Schweitzer HC
    J Am Aud Soc; 1979; 5(2):84-94. PubMed ID: 511668
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Behavioral assessment of adaptive feedback equalization in a digital hearing aid.
    French-St George M; Wood DJ; Engebretson AM
    J Rehabil Res Dev; 1993; 30(1):17-25. PubMed ID: 8263825
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.