These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 20329851)

  • 21. Toward an aerodynamic model of fricative consonants.
    Signorello R; Hassid S; Demolin D
    J Acoust Soc Am; 2018 May; 143(5):EL386. PubMed ID: 29857711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Language specificity in the perception of voiceless sibilant fricatives in Japanese and English: implications for cross-language differences in speech-sound development.
    Li F; Munson B; Edwards J; Yoneyama K; Hall K
    J Acoust Soc Am; 2011 Feb; 129(2):999-1011. PubMed ID: 21361456
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Velopharyngeal opening in the formation of voiced stops in Sindhi.
    Nihalani P
    Phonetica; 1975; 32(2):89-102. PubMed ID: 1197366
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Acoustic characteristics of Greek fricatives.
    Nirgianaki E
    J Acoust Soc Am; 2014 May; 135(5):2964-76. PubMed ID: 24815276
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Lip kinematics for /p/ and /b/ production during whispered and voiced speech.
    Higashikawa M; Green JR; Moore CA; Minifie FD
    Folia Phoniatr Logop; 2003; 55(1):17-27. PubMed ID: 12566763
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voice onset time versus articulatory modeling for stop consonants.
    Rothenberg M
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):171-80. PubMed ID: 19513923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Acoustic analysis of the voiced-voiceless distinction in Dutch tracheoesophageal speech.
    Jongmans P; Wempe TG; van Tinteren H; Hilgers FJ; Pols LC; van As-Brooks CJ
    J Speech Lang Hear Res; 2010 Apr; 53(2):284-97. PubMed ID: 20360458
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Unified Coding of Spectral and Temporal Phonetic Cues: Electrophysiological Evidence for Abstract Phonological Features.
    Monahan PJ; Schertz J; Fu Z; Pérez A
    J Cogn Neurosci; 2022 Mar; 34(4):618-638. PubMed ID: 35061026
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of voicing and articulation manner on aerosol particle emission during human speech.
    Asadi S; Wexler AS; Cappa CD; Barreda S; Bouvier NM; Ristenpart WD
    PLoS One; 2020; 15(1):e0227699. PubMed ID: 31986165
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Intelligibility of stops and fricatives in tracheoesophageal speech.
    Searl JP; Carpenter MA; Banta CL
    J Commun Disord; 2001; 34(4):305-21. PubMed ID: 11508897
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Partial devoicing of voiced geminate stops in Tokyo Japanese.
    Hussain Q; Shinohara S
    J Acoust Soc Am; 2019 Jan; 145(1):149. PubMed ID: 30710917
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Source characteristics of voiceless dorsal fricatives.
    Redmon C; Jongman A
    J Acoust Soc Am; 2018 Jul; 144(1):242. PubMed ID: 30075652
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-sibilant fricatives in English: spectral information above 10 kHz.
    Tabain M
    Phonetica; 1998; 55(3):107-30. PubMed ID: 9774754
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Analysis of VOT in Turkish speakers with aphasia.
    Kopkalli-Yavuz H; Mavis I; Akyildiz D
    Clin Linguist Phon; 2011 Apr; 25(4):287-301. PubMed ID: 21091206
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Word-initial voicing in the productions of stops in normal and preterm Italian infants.
    Bortolini U; Zmarich C; Fior R; Bonifacio S
    Int J Pediatr Otorhinolaryngol; 1995 Mar; 31(2-3):191-206. PubMed ID: 7782177
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Durational cues to fricative codas in 2-year-olds' American English: voicing and morphemic factors.
    Song JY; Demuth K; Evans K; Shattuck-Hufnagel S
    J Acoust Soc Am; 2013 May; 133(5):2931-46. PubMed ID: 23654398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acoustic analysis and detection of pharyngeal fricative in cleft palate speech using correlation of signals in independent frequency bands and octave spectrum prominent peak.
    He F; Wang X; Yin H; Zhang H; Yang G; He L
    Biomed Eng Online; 2020 May; 19(1):36. PubMed ID: 32460765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Contributions of temporal encodings of voicing, voicelessness, fundamental frequency, and amplitude variation to audio-visual and auditory speech perception.
    Faulkner A; Rosen S
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):2063-73. PubMed ID: 10530029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Analysis of vocal tract shape and dimensions using magnetic resonance imaging: vowels.
    Baer T; Gore JC; Gracco LC; Nye PW
    J Acoust Soc Am; 1991 Aug; 90(2 Pt 1):799-828. PubMed ID: 1939886
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Posterior pharyngeal wall position in the production of speech.
    Magen HS; Kang AM; Tiede MK; Whalen DH
    J Speech Lang Hear Res; 2003 Feb; 46(1):241-51. PubMed ID: 12647902
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.