BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 20331299)

  • 1. Electric conductivities of 1:1 electrolytes in high-temperature ethanol along the liquid-vapor coexistence curve. I. NaBr, KBr, and CsBr.
    Takahata K; Hoshina TA; Tsuchihashi N; Ibuki K; Ueno M
    J Chem Phys; 2010 Mar; 132(11):114501. PubMed ID: 20331299
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electric conductivities of 1:1 electrolytes in liquid methanol along the liquid-vapor coexistence curve up to the critical temperature. II. KBr and KI solutions.
    Hoshina TA; Tanaka K; Tsuchihashi N; Ibuki K; Ueno M
    J Chem Phys; 2004 Nov; 121(19):9517-25. PubMed ID: 15538873
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electric conductivities of 1:1 electrolytes in liquid methanol along the liquid-vapor coexistence curve up to the critical temperature. I. NaCl, KCl, and CsCl solutions.
    Hoshina TA; Tsuchihashi N; Ibuki K; Ueno M
    J Chem Phys; 2004 Mar; 120(9):4355-65. PubMed ID: 15268605
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electric conductivities of 1:1 electrolytes in liquid methanol along the liquid-vapor coexistence curve up to the critical temperature. III. Tetraalkylammonium bromides.
    Hoshina TA; Tanaka K; Tsuchihashi N; Ibuki K; Ueno M
    J Chem Phys; 2005 Mar; 122(10):104512. PubMed ID: 15836337
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electric conductivities of 1:1 electrolytes in high-temperature ethanol along the liquid-vapor coexistence curve. II. Tetraalkylammonium bromides.
    Matsui T; Hoshina TA; Tsuchihashi N; Ibuki K; Ueno M
    J Chem Phys; 2011 Mar; 134(12):124509. PubMed ID: 21456678
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Densities and apparent molar volumes of atmospherically important electrolyte solutions. 1. The solutes H2SO4, HNO3, HCl, Na2SO4, NaNO3, NaCl, (NH4)2SO4, NH4NO3, and NH4Cl from 0 to 50 °C, including extrapolations to very low temperature and to the pure liquid state, and NaHSO4, NaOH, and NH3 at 25 °C.
    Clegg SL; Wexler AS
    J Phys Chem A; 2011 Apr; 115(15):3393-460. PubMed ID: 21438504
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-diffusion of supercritical water in extremely low-density region.
    Yoshida K; Matubayasi N; Nakahara M
    J Chem Phys; 2006 Aug; 125(7):074307. PubMed ID: 16942339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fractional Walden rule for electrolytes in supercooled disaccharide aqueous solutions.
    Longinotti MP; Corti HR
    J Phys Chem B; 2009 Apr; 113(16):5500-7. PubMed ID: 19326883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular simulation of the shear viscosity and the self-diffusion coefficient of mercury along the vapor-liquid coexistence curve.
    Raabe G; Todd BD; Sadus RJ
    J Chem Phys; 2005 Jul; 123(3):34511. PubMed ID: 16080748
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Specific Na+ and K+ cation effects on the interfacial water molecules at the air/aqueous salt solution interfaces probed with nonresonant second harmonic generation.
    Bian HT; Feng RR; Guo Y; Wang HF
    J Chem Phys; 2009 Apr; 130(13):134709. PubMed ID: 19355766
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of the hydrogen ion conduction in liquid light and heavy water derived from the temperature dependence of their limiting conductivities.
    Sluyters JH; Sluyters-Rehbach M
    J Phys Chem B; 2010 Dec; 114(47):15582-9. PubMed ID: 21053916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conductivities and transport properties of gelled electrolytes with and without an ionic liquid for Li and Li-ion batteries.
    Bansal D; Cassel F; Croce F; Hendrickson M; Plichta E; Salomon M
    J Phys Chem B; 2005 Mar; 109(10):4492-6. PubMed ID: 16851523
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-diffusion coefficients for water and organic solvents at high temperatures along the coexistence curve.
    Yoshida K; Matubayasi N; Nakahara M
    J Chem Phys; 2008 Dec; 129(21):214501. PubMed ID: 19063563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrophoretic mobility of a highly charged colloidal particle in a solution of general electrolytes.
    Ohshima H
    J Colloid Interface Sci; 2004 Jul; 275(2):665-9. PubMed ID: 15178301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spectrum of excess partial molar absorptivity. Part II: a near infrared spectroscopic study of aqueous Na-halides.
    Sebe F; Nishikawa K; Koga Y
    Phys Chem Chem Phys; 2012 Apr; 14(13):4433-9. PubMed ID: 22358251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure, thermodynamics, and liquid-vapor equilibrium of ethanol from molecular-dynamics simulations using nonadditive interactions.
    Patel S; Brooks CL
    J Chem Phys; 2005 Oct; 123(16):164502. PubMed ID: 16268707
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pulsed laser photolysis and quantum chemical-statistical rate study of the reaction of the ethynyl radical with water vapor.
    Carl SA; Nguyen HM; Elsamra RM; Nguyen MT; Peeters J
    J Chem Phys; 2005 Mar; 122(11):114307. PubMed ID: 15836215
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoretic properties of dodecyltrimethylammonium bromide micelles in KBr solution.
    Sabaté R; Gallardo M; Estelrich J
    Electrophoresis; 2000 Feb; 21(3):481-5. PubMed ID: 10726747
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unique diffusion behavior observed in supercritical ethanol.
    Ghosh SK; Tsujii K
    J Chem Phys; 2010 Apr; 132(14):144503. PubMed ID: 20405997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conductivities, volumes, fluorescence, and aggregation behavior of ionic liquids [C4mim][BF4] and [C(n)mim]Br (n = 4, 6, 8, 10, 12) in aqueous solutions.
    Wang J; Wang H; Zhang S; Zhang H; Zhao Y
    J Phys Chem B; 2007 Jun; 111(22):6181-8. PubMed ID: 17497769
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.