These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

287 related articles for article (PubMed ID: 20332560)

  • 21. Anharmonic force constants extracted from first-principles molecular dynamics: applications to heat transfer simulations.
    Tadano T; Gohda Y; Tsuneyuki S
    J Phys Condens Matter; 2014 Jun; 26(22):225402. PubMed ID: 24824156
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Orientation specific synthesis of kinked silicon nanowires grown by the vapour-liquid-solid mechanism.
    Hyun YJ; Lugstein A; Steinmair M; Bertagnolli E; Pongratz P
    Nanotechnology; 2009 Mar; 20(12):125606. PubMed ID: 19420475
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Thermal conductivity of ge and ge-si core-shell nanowires in the phonon confinement regime.
    Wingert MC; Chen ZC; Dechaumphai E; Moon J; Kim JH; Xiang J; Chen R
    Nano Lett; 2011 Dec; 11(12):5507-13. PubMed ID: 22112167
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires.
    Martin P; Aksamija Z; Pop E; Ravaioli U
    Phys Rev Lett; 2009 Mar; 102(12):125503. PubMed ID: 19392295
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The thermal conductivity and thermal rectification of carbon nanotubes studied using reverse non-equilibrium molecular dynamics simulations.
    Alaghemandi M; Algaer E; Böhm MC; Müller-Plathe F
    Nanotechnology; 2009 Mar; 20(11):115704. PubMed ID: 19420452
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integration of thin-film-fracture-based nanowires into microchip fabrication.
    Jebril S; Elbahri M; Titazu G; Subannajui K; Essa S; Niebelschütz F; Röhlig CC; Cimalla V; Ambacher O; Schmidt B; Kabiraj D; Avasti D; Adelung R
    Small; 2008 Dec; 4(12):2214-21. PubMed ID: 18972459
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Simultaneous measurements of the specific heat and thermal conductivity of suspended thin samples by transient electrothermal method.
    Feng B; Ma W; Li Z; Zhang X
    Rev Sci Instrum; 2009 Jun; 80(6):064901. PubMed ID: 19566218
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Experimental investigation of size effects on the thermal conductivity of silicon-germanium alloy thin films.
    Cheaito R; Duda JC; Beechem TE; Hattar K; Ihlefeld JF; Medlin DL; Rodriguez MA; Campion MJ; Piekos ES; Hopkins PE
    Phys Rev Lett; 2012 Nov; 109(19):195901. PubMed ID: 23215405
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Equilibrium and nonequilibrium molecular dynamics simulations of the thermal conductivity of molten alkali halides.
    Galamba N; Nieto de Castro CA; Ely JF
    J Chem Phys; 2007 May; 126(20):204511. PubMed ID: 17552782
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The electromechanical response of silicon nanowires to buckling mode transitions.
    Wong CC; Reboud J; Neuzil P; Soon J; Agarwal A; Balasubramanian N; Liao K
    Nanotechnology; 2010 Oct; 21(40):405505. PubMed ID: 20829571
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Atomistics of the lithiation of oxidized silicon (SiO
    Jung H; Yeo BC; Lee KR; Han SS
    Phys Chem Chem Phys; 2016 Nov; 18(47):32078-32086. PubMed ID: 27819103
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and core/shell structures by galvanic exchange directly on surfaces.
    Sławiński GW; Zamborini FP
    Langmuir; 2007 Sep; 23(20):10357-65. PubMed ID: 17760472
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced thermal conductivity of epoxy composites filled with silicon carbide nanowires.
    Shen D; Zhan Z; Liu Z; Cao Y; Zhou L; Liu Y; Dai W; Nishimura K; Li C; Lin CT; Jiang N; Yu J
    Sci Rep; 2017 Jun; 7(1):2606. PubMed ID: 28572604
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Equilibrium limit of thermal conduction and boundary scattering in nanostructures.
    Haskins JB; Kınacı A; Sevik C; Çağın T
    J Chem Phys; 2014 Jun; 140(24):244112. PubMed ID: 24985623
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An ab initio study of energetic stability and electronic confinement for different structural phases of ZnO nanowires.
    Schmidt TM; Miwa RH
    Nanotechnology; 2009 May; 20(21):215202. PubMed ID: 19423926
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anomalous heat conduction and anomalous diffusion in nonlinear lattices, single walled nanotubes, and billiard gas channels.
    Li B; Wang J; Wang L; Zhang G
    Chaos; 2005 Mar; 15(1):15121. PubMed ID: 15836298
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Formation of manganese silicide nanowires on Si(111) surfaces by the reactive epitaxy method.
    Wang D; Zou ZQ
    Nanotechnology; 2009 Jul; 20(27):275607. PubMed ID: 19531857
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quasi-Ballistic Heat Conduction due to Lévy Phonon Flights in Silicon Nanowires.
    Anufriev R; Gluchko S; Volz S; Nomura M
    ACS Nano; 2018 Dec; 12(12):11928-11935. PubMed ID: 30418017
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Studies of thermal conductivity in Fermi-Pasta-Ulam-like lattices.
    Lepri S; Livi R; Politi A
    Chaos; 2005 Mar; 15(1):15118. PubMed ID: 15836295
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The growth mechanism for silicon oxide nanowires synthesized from an Au nanoparticle/polyimide/Si thin film stack.
    Kim JH; An HH; Woo HJ; Yoon CS
    Nanotechnology; 2008 Mar; 19(12):125604. PubMed ID: 21817736
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.