These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 20333179)

  • 1. Recent amplification and impact of MITEs on the genome of grapevine (Vitis vinifera L.).
    Benjak A; Boué S; Forneck A; Casacuberta JM
    Genome Biol Evol; 2009 May; 1():75-84. PubMed ID: 20333179
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genome-wide analysis of the "cut-and-paste" transposons of grapevine.
    Benjak A; Forneck A; Casacuberta JM
    PLoS One; 2008 Sep; 3(9):e3107. PubMed ID: 18769592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Amplification dynamics of miniature inverted-repeat transposable elements and their impact on rice trait variability.
    Castanera R; Vendrell-Mir P; Bardil A; Carpentier MC; Panaud O; Casacuberta JM
    Plant J; 2021 Jul; 107(1):118-135. PubMed ID: 33866641
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recent amplification of microsatellite-associated miniature inverted-repeat transposable elements in the pineapple genome.
    Lin L; Sharma A; Yu Q
    BMC Plant Biol; 2021 Sep; 21(1):424. PubMed ID: 34537020
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Different strategies to persist: the pogo-like Lemi1 transposon produces miniature inverted-repeat transposable elements or typical defective elements in different plant genomes.
    Guermonprez H; Loot C; Casacuberta JM
    Genetics; 2008 Sep; 180(1):83-92. PubMed ID: 18757929
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amplification of miniature inverted-repeat transposable elements and the associated impact on gene regulation and alternative splicing in mulberry (
    Xin Y; Ma B; Xiang Z; He N
    Mob DNA; 2019; 10():27. PubMed ID: 31289464
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-wide characterization and evolution analysis of miniature inverted-repeat transposable elements (MITEs) in moso bamboo (Phyllostachys heterocycla).
    Zhou M; Tao G; Pi P; Zhu Y; Bai Y; Meng X
    Planta; 2016 Oct; 244(4):775-87. PubMed ID: 27160169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evolutionary genomics of miniature inverted-repeat transposable elements (MITEs) in Brassica.
    Nouroz F; Noreen S; Heslop-Harrison JS
    Mol Genet Genomics; 2015 Dec; 290(6):2297-312. PubMed ID: 26129767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Global Landscape of Miniature Inverted-Repeat Transposable Elements in the Carrot Genome.
    Macko-Podgórni A; Machaj G; Grzebelus D
    Genes (Basel); 2021 Jun; 12(6):. PubMed ID: 34205210
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Active miniature inverted-repeat transposable elements transposon in plants: a review].
    Hu B; Zhou M
    Sheng Wu Gong Cheng Xue Bao; 2018 Feb; 34(2):204-215. PubMed ID: 29424134
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Plant Lineage-Specific Amplification of Transcription Factor Binding Motifs by Miniature Inverted-Repeat Transposable Elements (MITEs).
    Morata J; Marín F; Payet J; Casacuberta JM
    Genome Biol Evol; 2018 Apr; 10(5):1210-1220. PubMed ID: 29659815
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of B-Genome Specific High Copy hAT MITE Families in
    Perumal S; James B; Tang L; Kagale S; Robinson SJ; Yang TJ; Parkin IAP
    Front Plant Sci; 2020; 11():1104. PubMed ID: 32793262
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genome-wide view of miniature inverted-repeat transposable elements (MITEs) in rice, Oryza sativa ssp. japonica.
    Oki N; Yano K; Okumoto Y; Tsukiyama T; Teraishi M; Tanisaka T
    Genes Genet Syst; 2008 Aug; 83(4):321-9. PubMed ID: 18931457
    [TBL] [Abstract][Full Text] [Related]  

  • 14. MITE
    Adams FG; Brown MH
    mSphere; 2019 Feb; 4(1):. PubMed ID: 30787115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of novel MITEs (miniature inverted-repeat transposable elements) in Coxiella burnetii: implications for protein and small RNA evolution.
    Wachter S; Raghavan R; Wachter J; Minnick MF
    BMC Genomics; 2018 Apr; 19(1):247. PubMed ID: 29642859
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Population dynamics of miniature inverted-repeat transposable elements (MITEs) in Medicago truncatula.
    Grzebelus D; Gładysz M; Macko-Podgórni A; Gambin T; Golis B; Rakoczy R; Gambin A
    Gene; 2009 Dec; 448(2):214-20. PubMed ID: 19539732
    [TBL] [Abstract][Full Text] [Related]  

  • 17.
    Macko-Podgórni A; Stelmach K; Kwolek K; Grzebelus D
    Mob DNA; 2019; 10():47. PubMed ID: 31798695
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Widespread and evolutionary analysis of a MITE family Monkey King in Brassicaceae.
    Dai S; Hou J; Long Y; Wang J; Li C; Xiao Q; Jiang X; Zou X; Zou J; Meng J
    BMC Plant Biol; 2015 Jun; 15():149. PubMed ID: 26084405
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Miniature inverted-repeat transposable elements (MITEs) in rice were originated and amplified predominantly after the divergence of Oryza and Brachypodium and contributed considerable diversity to the species.
    Chen J; Lu C; Zhang Y; Kuang H
    Mob Genet Elements; 2012 May; 2(3):127-132. PubMed ID: 23061018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spliceosomal intron size expansion in domesticated grapevine (Vitis vinifera).
    Jiang K; Goertzen LR
    BMC Res Notes; 2011 Mar; 4():52. PubMed ID: 21385391
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.