These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 20333435)

  • 1. Cellular copper distribution: a mechanistic systems biology approach.
    Banci L; Bertini I; Cantini F; Ciofi-Baffoni S
    Cell Mol Life Sci; 2010 Aug; 67(15):2563-89. PubMed ID: 20333435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Posttranslational regulation of copper transporters.
    van den Berghe PV; Klomp LW
    J Biol Inorg Chem; 2010 Jan; 15(1):37-46. PubMed ID: 19813030
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrating trace element metabolism from the cell to the whole organism.
    Thiele DJ
    J Nutr; 2003 May; 133(5 Suppl 1):1579S-80S. PubMed ID: 12730470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in the understanding of mammalian copper transporters.
    Wang Y; Hodgkinson V; Zhu S; Weisman GA; Petris MJ
    Adv Nutr; 2011 Mar; 2(2):129-37. PubMed ID: 22332042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular and cellular aspects of copper transport in developing mammals.
    Mercer JF; Llanos RM
    J Nutr; 2003 May; 133(5 Suppl 1):1481S-4S. PubMed ID: 12730448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Copper transport systems are involved in multidrug resistance and drug transport.
    Furukawa T; Komatsu M; Ikeda R; Tsujikawa K; Akiyama S
    Curr Med Chem; 2008; 15(30):3268-78. PubMed ID: 19075668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. New developments in the regulation of intestinal copper absorption.
    van den Berghe PV; Klomp LW
    Nutr Rev; 2009 Nov; 67(11):658-72. PubMed ID: 19906252
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis.
    La Fontaine S; Mercer JF
    Arch Biochem Biophys; 2007 Jul; 463(2):149-67. PubMed ID: 17531189
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Golgi in copper homeostasis: a view from the membrane trafficking field.
    Polishchuk R; Lutsenko S
    Histochem Cell Biol; 2013 Sep; 140(3):285-95. PubMed ID: 23846821
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of the apico-basolateral trafficking polarity of the homologous copper-ATPases ATP7A and ATP7B.
    Ruturaj ; Mishra M; Saha S; Maji S; Rodriguez-Boulan E; Schreiner R; Gupta A
    J Cell Sci; 2024 Mar; 137(5):. PubMed ID: 38032054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trace elements in human physiology and pathology. Copper.
    Tapiero H; Townsend DM; Tew KD
    Biomed Pharmacother; 2003 Nov; 57(9):386-98. PubMed ID: 14652164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Critical roles for the COOH terminus of the Cu-ATPase ATP7B in protein stability, trans-Golgi network retention, copper sensing, and retrograde trafficking.
    Braiterman L; Nyasae L; Leves F; Hubbard AL
    Am J Physiol Gastrointest Liver Physiol; 2011 Jul; 301(1):G69-81. PubMed ID: 21454443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity and Trafficking of Copper-Transporting ATPases in Tumor Development and Defense against Platinum-Based Drugs.
    Petruzzelli R; Polishchuk RS
    Cells; 2019 Sep; 8(9):. PubMed ID: 31540259
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular mechanisms of copper homeostasis.
    Lalioti V; Muruais G; Tsuchiya Y; Pulido D; Sandoval IV
    Front Biosci (Landmark Ed); 2009 Jun; 14(13):4878-903. PubMed ID: 19482593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The copper-transporting ATPases, menkes and wilson disease proteins, have distinct roles in adult and developing cerebellum.
    Barnes N; Tsivkovskii R; Tsivkovskaia N; Lutsenko S
    J Biol Chem; 2005 Mar; 280(10):9640-5. PubMed ID: 15634671
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of copper transport crossing brain barrier systems by Cu-ATPases: effect of manganese exposure.
    Fu X; Zhang Y; Jiang W; Monnot AD; Bates CA; Zheng W
    Toxicol Sci; 2014 Jun; 139(2):432-51. PubMed ID: 24614235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A systems biology approach reveals new endoplasmic reticulum-associated targets for the correction of the ATP7B mutant causing Wilson disease.
    Concilli M; Iacobacci S; Chesi G; Carissimo A; Polishchuk R
    Metallomics; 2016 Sep; 8(9):920-930. PubMed ID: 27714068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper-transporting ATPases ATP7A and ATP7B: cousins, not twins.
    Linz R; Lutsenko S
    J Bioenerg Biomembr; 2007 Dec; 39(5-6):403-7. PubMed ID: 18000748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular machinery providing copper bioavailability for spermatozoa along the epididymial tubule in mouse.
    Ogórek M; Herman S; Pierzchała O; Bednarz A; Rajfur Z; Baster Z; Grzmil P; Starzyński RR; Szudzik M; Jończy A; Lipiński P; Lenartowicz M
    Biol Reprod; 2019 Jun; 100(6):1505-1520. PubMed ID: 30997485
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The SLC31 (Ctr) copper transporter family.
    Petris MJ
    Pflugers Arch; 2004 Feb; 447(5):752-5. PubMed ID: 12827356
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.