BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 20334102)

  • 1. Counterion-activated polyions as soft sensing systems in lipid bilayer membranes: from cell-penetrating peptides to DNA.
    Takeuchi T; Sakai N; Matile S
    Faraday Discuss; 2009; 143():187-203; discussion 265-75. PubMed ID: 20334102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphiphilic counterion activators for DNA: stimuli-responsive cation transporters and biosensors in bulk and lipid bilayer membranes.
    Takeuchi T; Bagnacani V; Sansone F; Matile S
    Chembiochem; 2009 Nov; 10(17):2793-9. PubMed ID: 19802869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anion-mediated transfer of polyarginine across liquid and bilayer membranes.
    Sakai N; Matile S
    J Am Chem Soc; 2003 Nov; 125(47):14348-56. PubMed ID: 14624583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anionic activators for differential sensing with cell-penetrating peptides.
    Montenegro J; Matile S
    Chem Asian J; 2011 Feb; 6(2):681-9. PubMed ID: 21254442
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counterion density profiles at charged flexible membranes.
    Fleck CC; Netz RR
    Phys Rev Lett; 2005 Sep; 95(12):128101. PubMed ID: 16197114
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Counterion-mediated membrane penetration: cationic cell-penetrating peptides overcome Born energy barrier by ion-pairing with phospholipids.
    Esbjörner EK; Lincoln P; Nordén B
    Biochim Biophys Acta; 2007 Jun; 1768(6):1550-8. PubMed ID: 17466938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrostatic interactions across a charged lipid bilayer.
    Wagner AJ; May S
    Eur Biophys J; 2007 Apr; 36(4-5):293-303. PubMed ID: 17047952
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamic octopus amphiphiles as powerful activators of DNA transporters: differential fragrance sensing and beyond.
    Montenegro J; Bonvin P; Takeuchi T; Matile S
    Chemistry; 2010 Dec; 16(47):14159-66. PubMed ID: 21038325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solvent-free simulations of fluid membrane bilayers.
    Brannigan G; Brown FL
    J Chem Phys; 2004 Jan; 120(2):1059-71. PubMed ID: 15267943
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bilayer mixing, fusion, and lysis following the interaction of populations of cationic and anionic phospholipid bilayer vesicles.
    Pantazatos DP; Pantazatos SP; MacDonald RC
    J Membr Biol; 2003 Jul; 194(2):129-39. PubMed ID: 14502437
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DNA nanostructures interacting with lipid bilayer membranes.
    Langecker M; Arnaut V; List J; Simmel FC
    Acc Chem Res; 2014 Jun; 47(6):1807-15. PubMed ID: 24828105
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physical basis for membrane-charge selectivity of cationic antimicrobial peptides.
    Taheri-Araghi S; Ha BY
    Phys Rev Lett; 2007 Apr; 98(16):168101. PubMed ID: 17501466
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilayer membranes and transporter models.
    Fyles TM
    Curr Opin Chem Biol; 1997 Dec; 1(4):497-505. PubMed ID: 9667885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Poly-l-lysines and poly-l-arginines induce leakage of negatively charged phospholipid vesicles and translocate through the lipid bilayer upon electrostatic binding to the membrane.
    Reuter M; Schwieger C; Meister A; Karlsson G; Blume A
    Biophys Chem; 2009 Sep; 144(1-2):27-37. PubMed ID: 19560854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tethered-bilayer lipid membranes as a support for membrane-active peptides.
    Cornell BA; Krishna G; Osman PD; Pace RD; Wieczorek L
    Biochem Soc Trans; 2001 Aug; 29(Pt 4):613-7. PubMed ID: 11498038
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Charge renormalization and inversion of a highly charged lipid bilayer: effects of dielectric discontinuities and charge correlations.
    Taheri-Araghi S; Ha BY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 1):021508. PubMed ID: 16196574
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ion transport through membrane-spanning nanopores studied by molecular dynamics simulations and continuum electrostatics calculations.
    Peter C; Hummer G
    Biophys J; 2005 Oct; 89(4):2222-34. PubMed ID: 16006629
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SAP(E) - A cell-penetrating polyproline helix at lipid interfaces.
    Franz J; Lelle M; Peneva K; Bonn M; Weidner T
    Biochim Biophys Acta; 2016 Sep; 1858(9):2028-2034. PubMed ID: 27237727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-penetrating HIV1 TAT peptides float on model lipid bilayers.
    Ciobanasu C; Harms E; Tünnemann G; Cardoso MC; Kubitscheck U
    Biochemistry; 2009 Jun; 48(22):4728-37. PubMed ID: 19400584
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.