These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 20334374)

  • 21. An efficient unnatural base pair for a base-pair-expanded transcription system.
    Mitsui T; Kimoto M; Harada Y; Yokoyama S; Hirao I
    J Am Chem Soc; 2005 Jun; 127(24):8652-8. PubMed ID: 15954770
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unnatural base pairs mediate the site-specific incorporation of an unnatural hydrophobic component into RNA transcripts.
    Endo M; Mitsui T; Okuni T; Kimoto M; Hirao I; Yokoyama S
    Bioorg Med Chem Lett; 2004 May; 14(10):2593-6. PubMed ID: 15109659
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet.
    Piccirilli JA; Krauch T; Moroney SE; Benner SA
    Nature; 1990 Jan; 343(6253):33-7. PubMed ID: 1688644
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Efficient PCR amplification by an unnatural base pair system.
    Kimoto M; Kawai R; Mitsui T; Yokoyama S; Hirao I
    Nucleic Acids Symp Ser (Oxf); 2008; (52):469-70. PubMed ID: 18776457
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An unnatural hydrophobic base pair with shape complementarity between pyrrole-2-carbaldehyde and 9-methylimidazo[(4,5)-b]pyridine.
    Mitsui T; Kitamura A; Kimoto M; To T; Sato A; Hirao I; Yokoyama S
    J Am Chem Soc; 2003 May; 125(18):5298-307. PubMed ID: 12720441
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Orthogonal base pairs continue to evolve.
    Bergstrom DE
    Chem Biol; 2004 Jan; 11(1):18-20. PubMed ID: 15112991
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High Fidelity, Efficiency and Functionalization of Ds-Px Unnatural Base Pairs in PCR Amplification for a Genetic Alphabet Expansion System.
    Okamoto I; Miyatake Y; Kimoto M; Hirao I
    ACS Synth Biol; 2016 Nov; 5(11):1220-1230. PubMed ID: 26814421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescent analysis of translesion DNA synthesis by using a novel, non-natural nucleotide analogue.
    Lee I; Berdis A
    Chembiochem; 2006 Dec; 7(12):1990-7. PubMed ID: 17091513
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unnatural base pairs between 2- and 6-substituted purines and 2-oxo(1H)pyridine for expansion of the genetic alphabet.
    Hirao I; Fujiwara T; Kimoto M; Yokoyama S
    Bioorg Med Chem Lett; 2004 Oct; 14(19):4887-90. PubMed ID: 15341945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. An unnatural hydrophobic base, 4-propynylpyrrole-2-carbaldehyde, as an efficient pairing partner of 9-methylimidazo[(4,5)-b]pyridine.
    Mitsui T; Kimoto M; Sato A; Yokoyama S; Hirao I
    Bioorg Med Chem Lett; 2003 Dec; 13(24):4515-8. PubMed ID: 14643359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An unnatural base pair system for in vitro replication and transcription.
    Hirao I; Kimoto M; Mitsui T; Fujiwara T; Kawai R; Sato A; Harada Y; Yokoyama S
    Nucleic Acids Symp Ser (Oxf); 2006; (50):33-4. PubMed ID: 17150803
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Site-specific fluorescent probing of RNA molecules by unnatural base-pair transcription for local structural conformation analysis.
    Hikida Y; Kimoto M; Yokoyama S; Hirao I
    Nat Protoc; 2010 Jul; 5(7):1312-23. PubMed ID: 20595959
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A specific partner for abasic damage in DNA.
    Matray TJ; Kool ET
    Nature; 1999 Jun; 399(6737):704-8. PubMed ID: 10385125
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 8-(p-CF3-cinnamyl)-modified purine nucleosides as promising fluorescent probes.
    Zilbershtein L; Silberman A; Fischer B
    Org Biomol Chem; 2011 Oct; 9(22):7763-73. PubMed ID: 21960279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Site-specific biotinylation of RNA molecules by transcription using unnatural base pairs.
    Moriyama K; Kimoto M; Mitsui T; Yokoyama S; Hirao I
    Nucleic Acids Res; 2005 Aug; 33(15):e129. PubMed ID: 16113238
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Monitoring the site-specific incorporation of dual fluorophore-quencher base analogues for target DNA detection by an unnatural base pair system.
    Yamashige R; Kimoto M; Mitsui T; Yokoyama S; Hirao I
    Org Biomol Chem; 2011 Nov; 9(21):7504-9. PubMed ID: 21935564
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorescent DNA base modifications and substitutes: multiple fluorophore labeling and the DETEQ concept.
    Wagenknecht HA
    Ann N Y Acad Sci; 2008; 1130():122-30. PubMed ID: 18096856
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Terminal phosphate-labeled nucleotides with improved substrate properties for homogeneous nucleic acid assays.
    Sood A; Kumar S; Nampalli S; Nelson JR; Macklin J; Fuller CW
    J Am Chem Soc; 2005 Mar; 127(8):2394-5. PubMed ID: 15724985
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure-switching signaling aptamers: transducing molecular recognition into fluorescence signaling.
    Nutiu R; Li Y
    Chemistry; 2004 Apr; 10(8):1868-76. PubMed ID: 15079825
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Human DNA primase uses Watson-Crick hydrogen bonds to distinguish between correct and incorrect nucleoside triphosphates.
    Moore CL; Zivkovic A; Engels JW; Kuchta RD
    Biochemistry; 2004 Sep; 43(38):12367-74. PubMed ID: 15379576
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.