These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 20334409)

  • 1. Drop production and tip-streaming phenomenon in a microfluidic flow-focusing device via an interfacial chemical reaction.
    Ward T; Faivre M; Stone HA
    Langmuir; 2010 Jun; 26(12):9233-9. PubMed ID: 20334409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrochemical generation of gradients in surfactant concentration across microfluidic channels.
    Liu X; Abbott NL
    Anal Chem; 2009 Jan; 81(2):772-81. PubMed ID: 19086794
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surfactant-enhanced liquid-liquid extraction in microfluidic channels with inline electric-field enhanced coalescence.
    Kralj JG; Schmidt MA; Jensen KF
    Lab Chip; 2005 May; 5(5):531-5. PubMed ID: 15856090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microfluidic preparation of water-in-oil-in-water emulsions with an ultra-thin oil phase layer.
    Saeki D; Sugiura S; Kanamori T; Sato S; Ichikawa S
    Lab Chip; 2010 Feb; 10(3):357-62. PubMed ID: 20091008
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Buoyancy-driven breakup of an isolated drop with surfactant.
    Rother MA; Davis RH
    Phys Rev Lett; 2008 Jul; 101(4):044501. PubMed ID: 18764332
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-emulsification of surfactant-oil mixtures produced by diffusion and chemical reaction.
    Miller CA
    J Cosmet Sci; 2001; 52(2):144-5. PubMed ID: 11414256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Independent control of drop size and velocity in microfluidic flow-focusing generators using variable temperature and flow rate.
    Stan CA; Tang SK; Whitesides GM
    Anal Chem; 2009 Mar; 81(6):2399-402. PubMed ID: 19209912
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catastrophic drop breakup in electric field.
    Raut JS; Akella S; Singh A; Naik VM
    Langmuir; 2009 May; 25(9):4829-34. PubMed ID: 19334721
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreversible fragmentation of a liquid interface for micro-droplet generation by light actuation.
    Diguet A; Li H; Queyriaux N; Chen Y; Baigl D
    Lab Chip; 2011 Aug; 11(16):2666-9. PubMed ID: 21727984
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An effervescent reaction micropump for portable microfluidic systems.
    Good BT; Bowman CN; Davis RH
    Lab Chip; 2006 May; 6(5):659-66. PubMed ID: 16652182
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Nonionic Surfactant on the Deformation and Breakup of a Drop in an Electric Field.
    Ha JW; Yang SM
    J Colloid Interface Sci; 1998 Oct; 206(1):195-204. PubMed ID: 9761644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the melting of kinetically frozen poly(butyl acrylate-b-acrylic acid) micelles via addition of surfactant.
    Jacquin M; Muller P; Cottet H; Crooks R; Théodoly O
    Langmuir; 2007 Sep; 23(20):9939-48. PubMed ID: 17718579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Shear-driven redistribution of surfactant affects enzyme activity in well-mixed femtoliter droplets.
    Liu Y; Jung SY; Collier CP
    Anal Chem; 2009 Jun; 81(12):4922-8. PubMed ID: 19441820
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Drop deformation dynamics and gel kinetics in a co-flowing water-in-oil system.
    Walther B; Cramer C; Tiemeyer A; Hamberg L; Fischer P; Windhab EJ; Hermansson AM
    J Colloid Interface Sci; 2005 Jun; 286(1):378-86. PubMed ID: 15848441
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Marangoni flow of Ag nanoparticles from the fluid-fluid interface.
    Johnson DD; Kang B; Vigorita JL; Amram A; Spain EM
    J Phys Chem A; 2008 Oct; 112(39):9318-23. PubMed ID: 18781724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fatty acid chemistry at the oil-water interface: self-propelled oil droplets.
    Hanczyc MM; Toyota T; Ikegami T; Packard N; Sugawara T
    J Am Chem Soc; 2007 Aug; 129(30):9386-91. PubMed ID: 17616129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping.
    Ward T; Faivre M; Abkarian M; Stone HA
    Electrophoresis; 2005 Oct; 26(19):3716-24. PubMed ID: 16196106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biopolymer microparticle and nanoparticle formation within a microfluidic device.
    Rondeau E; Cooper-White JJ
    Langmuir; 2008 Jun; 24(13):6937-45. PubMed ID: 18510374
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.