These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 20334467)
1. Attenuating experimental spinal cord injury by hyperbaric oxygen: stimulating production of vasculoendothelial and glial cell line-derived neurotrophic growth factors and interleukin-10. Tai PA; Chang CK; Niu KC; Lin MT; Chiu WT; Lin CM J Neurotrauma; 2010 Jun; 27(6):1121-7. PubMed ID: 20334467 [TBL] [Abstract][Full Text] [Related]
2. Human umbilical cord blood-derived CD34+ cells may attenuate spinal cord injury by stimulating vascular endothelial and neurotrophic factors. Kao CH; Chen SH; Chio CC; Lin MT Shock; 2008 Jan; 29(1):49-55. PubMed ID: 17666954 [TBL] [Abstract][Full Text] [Related]
3. Exogenous administration of glial cell line-derived neurotrophic factor improves recovery after spinal cord injury. Kao CH; Chen SH; Chio CC; Chang CK; Lin MT Resuscitation; 2008 Jun; 77(3):395-400. PubMed ID: 18367307 [TBL] [Abstract][Full Text] [Related]
4. Infusion of human umbilical cord blood cells ameliorates hind limb dysfunction in experimental spinal cord injury through anti-inflammatory, vasculogenic and neurotrophic mechanisms. Chen CT; Foo NH; Liu WS; Chen SH Pediatr Neonatol; 2008 Jun; 49(3):77-83. PubMed ID: 18947003 [TBL] [Abstract][Full Text] [Related]
5. [Effect of ultra-early hyperbaric oxygenation on spinal edema and hind limb motor function in rats with complete spinal cord transection]. Liu M; Wu XP; Tong M Nan Fang Yi Ke Da Xue Xue Bao; 2009 Oct; 29(10):2014-7. PubMed ID: 19861253 [TBL] [Abstract][Full Text] [Related]
6. Hypoxia-inducible expression of vascular endothelial growth factor for the treatment of spinal cord injury in a rat model. Choi UH; Ha Y; Huang X; Park SR; Chung J; Hyun DK; Park H; Park HC; Kim SW; Lee M J Neurosurg Spine; 2007 Jul; 7(1):54-60. PubMed ID: 17633488 [TBL] [Abstract][Full Text] [Related]
7. Neuroprotection of glial cell line-derived neurotrophic factor in damaged spinal cords following contusive injury. Cheng H; Wu JP; Tzeng SF J Neurosci Res; 2002 Aug; 69(3):397-405. PubMed ID: 12125080 [TBL] [Abstract][Full Text] [Related]
8. Gene transfer of glial cell line-derived neurotrophic factor promotes functional recovery following spinal cord contusion. Tai MH; Cheng H; Wu JP; Liu YL; Lin PR; Kuo JS; Tseng CJ; Tzeng SF Exp Neurol; 2003 Oct; 183(2):508-15. PubMed ID: 14552891 [TBL] [Abstract][Full Text] [Related]
9. Protective effect of liposome-mediated glial cell line-derived neurotrophic factor gene transfer in vivo on motoneurons following spinal cord injury in rats. Lu KW; Chen ZY; Hou TS Chin J Traumatol; 2004 Oct; 7(5):275-9. PubMed ID: 15363220 [TBL] [Abstract][Full Text] [Related]
10. Systemically administered interleukin-10 reduces tumor necrosis factor-alpha production and significantly improves functional recovery following traumatic spinal cord injury in rats. Bethea JR; Nagashima H; Acosta MC; Briceno C; Gomez F; Marcillo AE; Loor K; Green J; Dietrich WD J Neurotrauma; 1999 Oct; 16(10):851-63. PubMed ID: 10547095 [TBL] [Abstract][Full Text] [Related]
11. [Experimental study of tetramethylpyrazine-loaded electroconductive hydrogel on angiogenesis and neuroprotection after spinal cord injury]. Deng B; Jiang S; Liu G; Li X; Bai H; Huo L; Xu J; Xu L; Mu X Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2024 Feb; 38(2):189-197. PubMed ID: 38385232 [TBL] [Abstract][Full Text] [Related]
12. Minocycline reduces cell death and improves functional recovery after traumatic spinal cord injury in the rat. Lee SM; Yune TY; Kim SJ; Park DW; Lee YK; Kim YC; Oh YJ; Markelonis GJ; Oh TH J Neurotrauma; 2003 Oct; 20(10):1017-27. PubMed ID: 14588118 [TBL] [Abstract][Full Text] [Related]
14. Systemic administration of 17beta-estradiol reduces apoptotic cell death and improves functional recovery following traumatic spinal cord injury in rats. Yune TY; Kim SJ; Lee SM; Lee YK; Oh YJ; Kim YC; Markelonis GJ; Oh TH J Neurotrauma; 2004 Mar; 21(3):293-306. PubMed ID: 15115604 [TBL] [Abstract][Full Text] [Related]
15. A select combination of neurotrophins enhances neuroprotection and functional recovery following spinal cord injury. Sharma HS Ann N Y Acad Sci; 2007 Dec; 1122():95-111. PubMed ID: 18077567 [TBL] [Abstract][Full Text] [Related]
16. Protection of erythropoietin on experimental spinal cord injury by reducing the expression of thrombospondin-1 and transforming growth factor-beta. Fang XQ; Fang M; Fan SW; Gu CL Chin Med J (Engl); 2009 Jul; 122(14):1631-5. PubMed ID: 19719963 [TBL] [Abstract][Full Text] [Related]
17. Stronger expression of CHOP and caspase 12 in diabetic spinal cord injury rats. Wan S; Shi P; Zhang X; Gu C; Fan S Neurol Res; 2009 Dec; 31(10):1049-55. PubMed ID: 19215662 [TBL] [Abstract][Full Text] [Related]