BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

639 related articles for article (PubMed ID: 20334504)

  • 41. Activation of Transcription Factor GAX and Concomitant Downregulation of IL-1β and ERK1/2 Modulate Vascular Smooth Muscle Cell Phenotype in 3D Fibrous Scaffolds.
    Lin S; Mequanint K
    Tissue Eng Part A; 2015 Sep; 21(17-18):2356-65. PubMed ID: 26041434
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic and diverse changes in the functional properties of vascular smooth muscle cells in pulmonary hypertension.
    Stenmark KR; Frid MG; Graham BB; Tuder RM
    Cardiovasc Res; 2018 Mar; 114(4):551-564. PubMed ID: 29385432
    [TBL] [Abstract][Full Text] [Related]  

  • 43. [Mechanisms of the contractile activity control in smooth muscle cells].
    Zashikhin AL; Selin Ia; Barmina AO
    Morfologiia; 2010; 137(6):56-9. PubMed ID: 21513107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. MicroRNA-182 prevents vascular smooth muscle cell dedifferentiation via FGF9/PDGFRβ signaling.
    Dong N; Wang W; Tian J; Xie Z; Lv B; Dai J; Jiang R; Huang D; Fang S; Tian J; Li H; Yu B
    Int J Mol Med; 2017 Apr; 39(4):791-798. PubMed ID: 28259995
    [TBL] [Abstract][Full Text] [Related]  

  • 45. MicroRNAs dynamically remodel gastrointestinal smooth muscle cells.
    Park C; Yan W; Ward SM; Hwang SJ; Wu Q; Hatton WJ; Park JK; Sanders KM; Ro S
    PLoS One; 2011 Apr; 6(4):e18628. PubMed ID: 21533178
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regulation of vascular smooth muscle cells and mesenchymal stem cells by mechanical strain.
    Kurpinski K; Park J; Thakar RG; Li S
    Mol Cell Biomech; 2006 Mar; 3(1):21-34. PubMed ID: 16711069
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Endothelial cell modulation of smooth muscle cell morphology and organizational growth pattern.
    Powell RJ; Cronenwett JL; Fillinger MF; Wagner RJ; Sampson LN
    Ann Vasc Surg; 1996 Jan; 10(1):4-10. PubMed ID: 8688295
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Differentiation of smooth muscle progenitor cells in peripheral blood and its application in tissue engineered blood vessels.
    Xie SZ; Fang NT; Liu S; Zhou P; Zhang Y; Wang SM; Gao HY; Pan LF
    J Zhejiang Univ Sci B; 2008 Dec; 9(12):923-30. PubMed ID: 19067459
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Isolation and trans-differentiation of mesenchymal stromal cells into smooth muscle cells: Utility and applicability for cell-sheet engineering.
    Shudo Y; Cohen JE; Goldstone AB; MacArthur JW; Patel J; Edwards BB; Hopkins MS; Steele AN; Joubert LM; Miyagawa S; Sawa Y; Woo YJ
    Cytotherapy; 2016 Apr; 18(4):510-7. PubMed ID: 26971679
    [TBL] [Abstract][Full Text] [Related]  

  • 50. ROCK controls matrix synthesis in vascular smooth muscle cells: coupling vasoconstriction to vascular remodeling.
    Chapados R; Abe K; Ihida-Stansbury K; McKean D; Gates AT; Kern M; Merklinger S; Elliott J; Plant A; Shimokawa H; Jones PL
    Circ Res; 2006 Oct; 99(8):837-44. PubMed ID: 16990566
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Smooth Muscle Cell Differentiation: Model Systems, Regulatory Mechanisms, and Vascular Diseases.
    Shi N; Chen SY
    J Cell Physiol; 2016 Apr; 231(4):777-87. PubMed ID: 26425843
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Intracellular calcium transients are necessary for platelet-derived growth factor but not extracellular matrix protein-induced vascular smooth muscle cell migration.
    Hollenbeck ST; Nelson PR; Yamamura S; Faries PL; Liu B; Kent KC
    J Vasc Surg; 2004 Aug; 40(2):351-8. PubMed ID: 15297833
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Altered response of vascular smooth muscle cells to exogenous biochemical stimulation in two- and three-dimensional culture.
    Stegemann JP; Nerem RM
    Exp Cell Res; 2003 Feb; 283(2):146-55. PubMed ID: 12581735
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functional characterization and transcriptome analysis of embryonic stem cell-derived contractile smooth muscle cells.
    Potta SP; Liang H; Pfannkuche K; Winkler J; Chen S; Doss MX; Obernier K; Kamisetti N; Schulz H; Hübner N; Hescheler J; Sachinidis A
    Hypertension; 2009 Feb; 53(2):196-204. PubMed ID: 19064816
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Phenotype and functional plasticity of airway smooth muscle: role of caveolae and caveolins.
    Halayko AJ; Tran T; Gosens R
    Proc Am Thorac Soc; 2008 Jan; 5(1):80-8. PubMed ID: 18094089
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of molecular determinants of smooth muscle cell heterogeneity.
    Halayko AJ; Rector E; Stephens NL
    Can J Physiol Pharmacol; 1997 Jul; 75(7):917-29. PubMed ID: 9315361
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Complex regulation and function of the inflammatory smooth muscle cell phenotype in atherosclerosis.
    Orr AW; Hastings NE; Blackman BR; Wamhoff BR
    J Vasc Res; 2010; 47(2):168-80. PubMed ID: 19851078
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effect of estrogen on vascular smooth muscle cells is dependent upon cellular phenotype.
    Song J; Wan Y; Rolfe BE; Campbell JH; Campbell GR
    Atherosclerosis; 1998 Sep; 140(1):97-104. PubMed ID: 9733220
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Engineering Smooth Muscle to Understand Extracellular Matrix Remodeling and Vascular Disease.
    Yarbrough D; Gerecht S
    Bioengineering (Basel); 2022 Sep; 9(9):. PubMed ID: 36134994
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bioengineering functional human sphincteric and non-sphincteric gastrointestinal smooth muscle constructs.
    Rego SL; Zakhem E; Orlando G; Bitar KN
    Methods; 2016 Apr; 99():128-34. PubMed ID: 26314281
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 32.