These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 20334652)

  • 1. Automated characterization of cell shape changes during amoeboid motility by skeletonization.
    Xiong Y; Kabacoff C; Franca-Koh J; Devreotes PN; Robinson DN; Iglesias PA
    BMC Syst Biol; 2010 Mar; 4():33. PubMed ID: 20334652
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tools for analyzing cell shape changes during chemotaxis.
    Xiong Y; Iglesias PA
    Integr Biol (Camb); 2010 Nov; 2(11-12):561-7. PubMed ID: 20886151
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of protrusion dynamics in amoeboid cell motility by means of regularized contour flows.
    Schindler D; Moldenhawer T; Stange M; Lepro V; Beta C; Holschneider M; Huisinga W
    PLoS Comput Biol; 2021 Aug; 17(8):e1009268. PubMed ID: 34424898
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quimp3, an automated pseudopod-tracking algorithm.
    Bosgraaf L; Van Haastert PJ
    Cell Adh Migr; 2010; 4(1):46-55. PubMed ID: 19949291
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-component contour dynamics model to simulate and analyze amoeboid cell motility in two dimensions.
    Schindler D; Moldenhawer T; Beta C; Huisinga W; Holschneider M
    PLoS One; 2024; 19(1):e0297511. PubMed ID: 38277351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer-assisted analysis of filopod formation and the role of myosin II heavy chain phosphorylation in Dictyostelium.
    Heid PJ; Geiger J; Wessels D; Voss E; Soll DR
    J Cell Sci; 2005 May; 118(Pt 10):2225-37. PubMed ID: 15855234
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The use of computers in understanding how animal cells crawl.
    Soll DR
    Int Rev Cytol; 1995; 163():43-104. PubMed ID: 8522423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Amoeboid movement anchored by eupodia, new actin-rich knobby feet in Dictyostelium.
    Fukui Y; Inoué S
    Cell Motil Cytoskeleton; 1997; 36(4):339-54. PubMed ID: 9096956
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Dynamic Morphology System": a method for quantitating changes in shape, pseudopod formation, and motion in normal and mutant amoebae of Dictyostelium discoideum.
    Soll DR; Voss E; Varnum-Finney B; Wessels D
    J Cell Biochem; 1988 Jun; 37(2):177-92. PubMed ID: 2456295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Amoeboid leukocyte crawling through extracellular matrix: lessons from the Dictyostelium paradigm of cell movement.
    Friedl P; Borgmann S; Bröcker EB
    J Leukoc Biol; 2001 Oct; 70(4):491-509. PubMed ID: 11590185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inversely correlated cycles in speed and turning in an ameba: an oscillatory model of cell locomotion.
    Shenderov AD; Sheetz MP
    Biophys J; 1997 May; 72(5):2382-9. PubMed ID: 9129842
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pseudopodium dynamics and rapid cell movement in Dictyostelium Ras pathway mutants.
    Chubb JR; Wilkins A; Wessels DJ; Soll DR; Insall RH
    Cell Motil Cytoskeleton; 2002 Oct; 53(2):150-62. PubMed ID: 12211111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanosensitive Adhesion Explains Stepping Motility in Amoeboid Cells.
    Copos CA; Walcott S; Del Álamo JC; Bastounis E; Mogilner A; Guy RD
    Biophys J; 2017 Jun; 112(12):2672-2682. PubMed ID: 28636923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling random crawling, membrane deformation and intracellular polarity of motile amoeboid cells.
    Alonso S; Stange M; Beta C
    PLoS One; 2018; 13(8):e0201977. PubMed ID: 30138392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A computational study of amoeboid motility in 3D: the role of extracellular matrix geometry, cell deformability, and cell-matrix adhesion.
    Campbell EJ; Bagchi P
    Biomech Model Mechanobiol; 2021 Feb; 20(1):167-191. PubMed ID: 32772275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Activated membrane patches guide chemotactic cell motility.
    Hecht I; Skoge ML; Charest PG; Ben-Jacob E; Firtel RA; Loomis WF; Levine H; Rappel WJ
    PLoS Comput Biol; 2011 Jun; 7(6):e1002044. PubMed ID: 21738453
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distribution of traction forces associated with shape changes during amoeboid cell migration.
    Alonso-Latorre B; Meili R; Bastounis E; Del Alamo JC; Firtel R; Lasheras JC
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3346-9. PubMed ID: 19964075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sphingosine-1-phosphate plays a role in the suppression of lateral pseudopod formation during Dictyostelium discoideum cell migration and chemotaxis.
    Kumar A; Wessels D; Daniels KJ; Alexander H; Alexander S; Soll DR
    Cell Motil Cytoskeleton; 2004 Dec; 59(4):227-41. PubMed ID: 15476260
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cell-substrate interactions and locomotion of Dictyostelium wild-type and mutants defective in three cytoskeletal proteins: a study using quantitative reflection interference contrast microscopy.
    Schindl M; Wallraff E; Deubzer B; Witke W; Gerisch G; Sackmann E
    Biophys J; 1995 Mar; 68(3):1177-90. PubMed ID: 7756537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both contractile axial and lateral traction force dynamics drive amoeboid cell motility.
    Bastounis E; Meili R; Álvarez-González B; Francois J; del Álamo JC; Firtel RA; Lasheras JC
    J Cell Biol; 2014 Mar; 204(6):1045-61. PubMed ID: 24637328
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.