These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 20334683)
1. The ancient history of the structure of ribonuclease P and the early origins of Archaea. Sun FJ; Caetano-Anollés G BMC Bioinformatics; 2010 Mar; 11():153. PubMed ID: 20334683 [TBL] [Abstract][Full Text] [Related]
2. The evolutionary history of the structure of 5S ribosomal RNA. Sun FJ; Caetano-Anollés G J Mol Evol; 2009 Nov; 69(5):430-43. PubMed ID: 19639237 [TBL] [Abstract][Full Text] [Related]
3. Studies on Methanocaldococcus jannaschii RNase P reveal insights into the roles of RNA and protein cofactors in RNase P catalysis. Pulukkunat DK; Gopalan V Nucleic Acids Res; 2008 Jul; 36(12):4172-80. PubMed ID: 18558617 [TBL] [Abstract][Full Text] [Related]
4. The evolutionary history of protein fold families and proteomes confirms that the archaeal ancestor is more ancient than the ancestors of other superkingdoms. Kim KM; Caetano-Anollés G BMC Evol Biol; 2012 Jan; 12():13. PubMed ID: 22284070 [TBL] [Abstract][Full Text] [Related]
5. Dissecting functional cooperation among protein subunits in archaeal RNase P, a catalytic ribonucleoprotein complex. Chen WY; Pulukkunat DK; Cho IM; Tsai HY; Gopalan V Nucleic Acids Res; 2010 Dec; 38(22):8316-27. PubMed ID: 20705647 [TBL] [Abstract][Full Text] [Related]
6. Sequence Analysis and Comparative Study of the Protein Subunits of Archaeal RNase P. Samanta MP; Lai SM; Daniels CJ; Gopalan V Biomolecules; 2016 Apr; 6(2):. PubMed ID: 27104580 [TBL] [Abstract][Full Text] [Related]
7. Transfer RNA and the origins of diversified life. Sun FJ; Caetano-Anollés G Sci Prog; 2008; 91(Pt 3):265-84. PubMed ID: 18853577 [TBL] [Abstract][Full Text] [Related]
8. Protein cofactors and substrate influence Mg2+-dependent structural changes in the catalytic RNA of archaeal RNase P. Marathe IA; Lai SM; Zahurancik WJ; Poirier MG; Wysocki VH; Gopalan V Nucleic Acids Res; 2021 Sep; 49(16):9444-9458. PubMed ID: 34387688 [TBL] [Abstract][Full Text] [Related]
9. Transfer RNA processing in archaea: unusual pathways and enzymes. Heinemann IU; Söll D; Randau L FEBS Lett; 2010 Jan; 584(2):303-9. PubMed ID: 19878676 [TBL] [Abstract][Full Text] [Related]
10. Evolutionary patterns in the sequence and structure of transfer RNA: early origins of archaea and viruses. Sun FJ; Caetano-Anollés G PLoS Comput Biol; 2008 Mar; 4(3):e1000018. PubMed ID: 18369418 [TBL] [Abstract][Full Text] [Related]
11. Cooperative RNP assembly: complementary rescue of structural defects by protein and RNA subunits of archaeal RNase P. Chen WY; Xu Y; Cho IM; Oruganti SV; Foster MP; Gopalan V J Mol Biol; 2011 Aug; 411(2):368-83. PubMed ID: 21683084 [TBL] [Abstract][Full Text] [Related]
12. The origin and evolution of tRNA inferred from phylogenetic analysis of structure. Sun FJ; Caetano-Anollés G J Mol Evol; 2008 Jan; 66(1):21-35. PubMed ID: 18058157 [TBL] [Abstract][Full Text] [Related]
13. Fidelity of tRNA 5'-maturation: a possible basis for the functional dependence of archaeal and eukaryal RNase P on multiple protein cofactors. Chen WY; Singh D; Lai LB; Stiffler MA; Lai HD; Foster MP; Gopalan V Nucleic Acids Res; 2012 May; 40(10):4666-80. PubMed ID: 22298511 [TBL] [Abstract][Full Text] [Related]
14. RNase P: interface of the RNA and protein worlds. Evans D; Marquez SM; Pace NR Trends Biochem Sci; 2006 Jun; 31(6):333-41. PubMed ID: 16679018 [TBL] [Abstract][Full Text] [Related]
15. Archaeal-bacterial chimeric RNase P RNAs: towards understanding RNA's architecture, function and evolution. Li D; Gössringer M; Hartmann RK Chembiochem; 2011 Jul; 12(10):1536-43. PubMed ID: 21574237 [TBL] [Abstract][Full Text] [Related]
16. Cleavage of model substrates by archaeal RNase P: role of protein cofactors in cleavage-site selection. Sinapah S; Wu S; Chen Y; Pettersson BM; Gopalan V; Kirsebom LA Nucleic Acids Res; 2011 Feb; 39(3):1105-16. PubMed ID: 20935047 [TBL] [Abstract][Full Text] [Related]
17. Solution structure of an archaeal RNase P binary protein complex: formation of the 30-kDa complex between Pyrococcus furiosus RPP21 and RPP29 is accompanied by coupled protein folding and highlights critical features for protein-protein and protein-RNA interactions. Xu Y; Amero CD; Pulukkunat DK; Gopalan V; Foster MP J Mol Biol; 2009 Nov; 393(5):1043-55. PubMed ID: 19733182 [TBL] [Abstract][Full Text] [Related]
18. Structure, function, and evolution of the tRNA endonucleases of Archaea: an example of subfunctionalization. Tocchini-Valentini GD; Fruscoloni P; Tocchini-Valentini GP Proc Natl Acad Sci U S A; 2005 Jun; 102(25):8933-8. PubMed ID: 15937113 [TBL] [Abstract][Full Text] [Related]
19. An emerging phylogenetic core of Archaea: phylogenies of transcription and translation machineries converge following addition of new genome sequences. Brochier C; Forterre P; Gribaldo S BMC Evol Biol; 2005 Jun; 5():36. PubMed ID: 15932645 [TBL] [Abstract][Full Text] [Related]