These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
338 related articles for article (PubMed ID: 20334864)
1. Recent trends in the liquid chromatography-mass spectrometry analysis of organic contaminants in environmental samples. Petrovic M; Farré M; de Alda ML; Perez S; Postigo C; Köck M; Radjenovic J; Gros M; Barcelo D J Chromatogr A; 2010 Jun; 1217(25):4004-17. PubMed ID: 20334864 [TBL] [Abstract][Full Text] [Related]
2. Achievements and future trends in the analysis of emerging organic contaminants in environmental samples by mass spectrometry and bioanalytical techniques. Farré M; Kantiani L; Petrovic M; Pérez S; Barceló D J Chromatogr A; 2012 Oct; 1259():86-99. PubMed ID: 22877973 [TBL] [Abstract][Full Text] [Related]
3. Accurate mass screening and identification of emerging contaminants in environmental samples by liquid chromatography-hybrid linear ion trap Orbitrap mass spectrometry. Hogenboom AC; van Leerdam JA; de Voogt P J Chromatogr A; 2009 Jan; 1216(3):510-9. PubMed ID: 18771771 [TBL] [Abstract][Full Text] [Related]
4. Application of hydrophilic interaction chromatography for the analysis of polar contaminants in food and environmental samples. van Nuijs AL; Tarcomnicu I; Covaci A J Chromatogr A; 2011 Sep; 1218(35):5964-74. PubMed ID: 21316059 [TBL] [Abstract][Full Text] [Related]
5. Environmental and food applications of LC-tandem mass spectrometry in pesticide-residue analysis: an overview. Picó Y; Blasco C; Font G Mass Spectrom Rev; 2004; 23(1):45-85. PubMed ID: 14625892 [TBL] [Abstract][Full Text] [Related]
6. Liquid chromatography-tandem mass spectrometry for the analysis of pharmaceutical residues in environmental samples: a review. Petrović M; Hernando MD; Díaz-Cruz MS; Barceló D J Chromatogr A; 2005 Mar; 1067(1-2):1-14. PubMed ID: 15844508 [TBL] [Abstract][Full Text] [Related]
7. Occurrence of polar organic contaminants in the dissolved water phase of the Danube River and its major tributaries using SPE-LC-MS(2) analysis. Loos R; Locoro G; Contini S Water Res; 2010 Apr; 44(7):2325-35. PubMed ID: 20074769 [TBL] [Abstract][Full Text] [Related]
8. Application of liquid chromatography/quadrupole-linear Ion trap mass spectrometry and time-of-flight mass spectrometry to the determination of pharmaceuticals and related contaminants in wastewater. Bueno MJ; Agüera A; Gómez MJ; Hernando MD; García-Reyes JF; Fernandez-Alba AR Anal Chem; 2007 Dec; 79(24):9372-84. PubMed ID: 18001124 [TBL] [Abstract][Full Text] [Related]
9. Comparison of different mass spectrometric techniques combined with liquid chromatography for confirmation of pesticides in environmental water based on the use of identification points. Hernández F; Ibáñez M; Sancho JV; Pozo OJ Anal Chem; 2004 Aug; 76(15):4349-57. PubMed ID: 15283572 [TBL] [Abstract][Full Text] [Related]
10. The application of CE-MS in the trace analysis of environmental pollutants and food contaminants. Rodríguez Robledo V; Smyth WF Electrophoresis; 2009 May; 30(10):1647-60. PubMed ID: 19378285 [TBL] [Abstract][Full Text] [Related]
11. Recent advances in mass spectrometry analysis of phenolic endocrine disruptors and related compounds. Gallart-Ayala H; Moyano E; Galceran MT Mass Spectrom Rev; 2010; 29(5):776-805. PubMed ID: 19367629 [TBL] [Abstract][Full Text] [Related]
12. Application of liquid chromatography/quadrupole time-of-flight mass spectrometry (LC-QqTOF-MS) in the environmental analysis. Petrovic M; Barceló D J Mass Spectrom; 2006 Oct; 41(10):1259-67. PubMed ID: 17039579 [TBL] [Abstract][Full Text] [Related]
13. Multi-residue analysis of 80 environmental contaminants in honeys, honeybees and pollens by one extraction procedure followed by liquid and gas chromatography coupled with mass spectrometric detection. Wiest L; Buleté A; Giroud B; Fratta C; Amic S; Lambert O; Pouliquen H; Arnaudguilhem C J Chromatogr A; 2011 Aug; 1218(34):5743-56. PubMed ID: 21783197 [TBL] [Abstract][Full Text] [Related]
14. Advantages and limitations of on-line solid phase extraction coupled to liquid chromatography-mass spectrometry technologies versus biosensors for monitoring of emerging contaminants in water. Rodriguez-Mozaz S; Lopez de Alda MJ; Barceló D J Chromatogr A; 2007 Jun; 1152(1-2):97-115. PubMed ID: 17275010 [TBL] [Abstract][Full Text] [Related]
15. Liquid chromatography and tandem mass spectrometry: a powerful approach for the sensitive and rapid multiclass determination of pesticides and transformation products in water. Sancho JV; Pozo OJ; Hernández F Analyst; 2004 Jan; 129(1):38-44. PubMed ID: 14737581 [TBL] [Abstract][Full Text] [Related]
16. Mass spectrometry applied to the analysis of estrogens in the environment. Croley TR; Hughes RJ; Koenig BG; Metcalfe CD; March RE Rapid Commun Mass Spectrom; 2000; 14(13):1087-93. PubMed ID: 10867682 [TBL] [Abstract][Full Text] [Related]
17. Analysis of macrolide antibiotics, using liquid chromatography-mass spectrometry, in food, biological and environmental matrices. Wang J Mass Spectrom Rev; 2009; 28(1):50-92. PubMed ID: 18785191 [TBL] [Abstract][Full Text] [Related]
18. LC-MS analysis in the aquatic environment and in water treatment technology--a critical review. Part II: Applications for emerging contaminants and related pollutants, microorganisms and humic acids. Zwiener C; Frimmel FH Anal Bioanal Chem; 2004 Feb; 378(4):862-74. PubMed ID: 14673565 [TBL] [Abstract][Full Text] [Related]
19. Residue analysis of 500 high priority pesticides: better by GC-MS or LC-MS/MS? Alder L; Greulich K; Kempe G; Vieth B Mass Spectrom Rev; 2006; 25(6):838-65. PubMed ID: 16755599 [TBL] [Abstract][Full Text] [Related]
20. Liquid chromatography-tandem mass spectrometric analysis and regulatory issues of polar pesticides in natural and treated waters. Kuster M; López de Alda M; Barceló D J Chromatogr A; 2009 Jan; 1216(3):520-9. PubMed ID: 18789448 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]