These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 20334894)

  • 41. Effects of chelate application time on the phytoextraction of lead-contaminated soils.
    Begonia MT; Begonia GB; Miller GS; Gilliard D
    Bull Environ Contam Toxicol; 2004 Dec; 73(6):1033-40. PubMed ID: 15674717
    [No Abstract]   [Full Text] [Related]  

  • 42. Nitrilotriacetate- and citric acid-assisted phytoextraction of cadmium by Indian mustard (Brassica juncea (L.) Czernj, Brassicaceae).
    Quartacci MF; Baker AJ; Navari-Izzo F
    Chemosphere; 2005 Jun; 59(9):1249-55. PubMed ID: 15857636
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Effect of chemical amendments on the concentration of cadmium and lead in long-term contaminated soils.
    Lee TM; Lai HY; Chen ZS
    Chemosphere; 2004 Dec; 57(10):1459-71. PubMed ID: 15519390
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils.
    Turgut C; Pepe MK; Cutright TJ
    Chemosphere; 2005 Feb; 58(8):1087-95. PubMed ID: 15664616
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phytoextraction of lead from firing range soil by Vetiver grass.
    Wilde EW; Brigmon RL; Dunn DL; Heitkamp MA; Dagnan DC
    Chemosphere; 2005 Dec; 61(10):1451-7. PubMed ID: 15964059
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Metal extraction by Alyssum serpyllifolium ssp. lusitanicum on mine-spoil soils from Spain.
    Kidd PS; Monterroso C
    Sci Total Environ; 2005 Jan; 336(1-3):1-11. PubMed ID: 15589245
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The influence of different growth stages and dosage of EDTA on Cd uptake and accumulation in Cd-hyperaccumulator (Solanum nigrum L.).
    Sun Y; Zhou Q; Wang L; Liu W
    Bull Environ Contam Toxicol; 2009 Mar; 82(3):348-53. PubMed ID: 19002363
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents.
    Chiu KK; Ye ZH; Wong MH
    Chemosphere; 2005 Sep; 60(10):1365-75. PubMed ID: 16054905
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Growth and lead accumulation by the grasses Vetiveria zizanioides and Thysanolaena maxima in lead-contaminated soil amended with pig manure and fertilizer: a glasshouse study.
    Rotkittikhun P; Chaiyarat R; Kruatrachue M; Pokethitiyook P; Baker AJ
    Chemosphere; 2007 Jan; 66(1):45-53. PubMed ID: 16828842
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The use of NTA and EDDS for enhanced phytoextraction of metals from a multiply contaminated soil by Brassica carinata.
    Quartacci MF; Irtelli B; Baker AJ; Navari-Izzo F
    Chemosphere; 2007 Aug; 68(10):1920-8. PubMed ID: 17418884
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Effects of soil amendments and EDTA on lead uptake by Chromolaena odorata: greenhouse and field trial experiments.
    Tanhan P; Pokethitiyook P; Kruatrachue M; Chaiyarat R; Upatham S
    Int J Phytoremediation; 2011 Oct; 13(9):897-911. PubMed ID: 21972512
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Chelate-induced phytoextraction of metal polluted soils with Brachiaria decumbens.
    Santos FS; Hernández-Allica J; Becerril JM; Amaral-Sobrinho N; Mazur N; Garbisu C
    Chemosphere; 2006 Sep; 65(1):43-50. PubMed ID: 16624375
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Enhancement of lead uptake by alfalfa (Medicago sativa) using EDTA and a plant growth promoter.
    López ML; Peralta-Videa JR; Benitez T; Gardea-Torresdey JL
    Chemosphere; 2005 Oct; 61(4):595-8. PubMed ID: 16202815
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The role of root damage in the chelate-enhanced accumulation of lead by Indian mustard plants.
    Luo C; Shen Z; Li X; Baker AJ
    Int J Phytoremediation; 2006; 8(4):323-37. PubMed ID: 17305306
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Joint enhancement of lead accumulation in Brassica plants by EDTA and ammonium sulfate in sand culture.
    Xiong ZT; Lu P
    J Environ Sci (China); 2002 Apr; 14(2):216-20. PubMed ID: 12046290
    [TBL] [Abstract][Full Text] [Related]  

  • 56. EDTA-assisted phytoextraction of lead from lead-contaminated soils by Echinochloa crusgalli var. frumentacea.
    Baek KH; Kim HH; Bae B; Chang YY; Lee IS
    J Environ Biol; 2005 Jan; 26(1):151-4. PubMed ID: 16114477
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain.
    Lu Y; Luo D; Lai A; Liu G; Liu L; Long J; Zhang H; Chen Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1845-1853. PubMed ID: 27796994
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus.
    Zaier H; Ghnaya T; Ben Rejeb K; Lakhdar A; Rejeb S; Jemal F
    Bioresour Technol; 2010 Jun; 101(11):3978-83. PubMed ID: 20129779
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Use of iodide to enhance the phytoextraction of mercury-contaminated soil.
    Wang Y; Greger M
    Sci Total Environ; 2006 Sep; 368(1):30-9. PubMed ID: 16236348
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Heap leaching of Pb and Zn contaminated soil using ozone/UV treatment of EDTA extractants.
    Finzgar N; Lestan D
    Chemosphere; 2006 Jun; 63(10):1736-43. PubMed ID: 16288797
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.