These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
339 related articles for article (PubMed ID: 20335091)
1. Reconstruction and finite element mesh generation of abdominal aortic aneurysms from computerized tomography angiography data with minimal user interactions. Auer M; Gasser TC IEEE Trans Med Imaging; 2010 Apr; 29(4):1022-8. PubMed ID: 20335091 [TBL] [Abstract][Full Text] [Related]
2. Segmentation of thrombus in abdominal aortic aneurysms from CTA with nonparametric statistical grey level appearance modeling. Olabarriaga SD; Rouet JM; Fradkin M; Breeuwer M; Niessen WJ IEEE Trans Med Imaging; 2005 Apr; 24(4):477-85. PubMed ID: 15822806 [TBL] [Abstract][Full Text] [Related]
3. Automated finite-element analysis for deformable registration of prostate images. Crouch JR; Pizer SM; Chaney EL; Hu YC; Mageras GS; Zaider M IEEE Trans Med Imaging; 2007 Oct; 26(10):1379-90. PubMed ID: 17948728 [TBL] [Abstract][Full Text] [Related]
4. Reproducibility of deriving parameters of AAA rupture risk from patient-specific 3D finite element models. Hyhlik-Dürr A; Krieger T; Geisbüsch P; Kotelis D; Able T; Böckler D J Endovasc Ther; 2011 Jun; 18(3):289-98. PubMed ID: 21679063 [TBL] [Abstract][Full Text] [Related]
5. A fast and robust patient specific Finite Element mesh registration technique: application to 60 clinical cases. Bucki M; Lobos C; Payan Y Med Image Anal; 2010 Jun; 14(3):303-17. PubMed ID: 20299273 [TBL] [Abstract][Full Text] [Related]
6. Development of a population-based model of surface segmentation uncertainties for uncertainty-weighted deformable image registrations. Wu J; Murphy MJ; Weiss E; Sleeman WC; Williamson J Med Phys; 2010 Feb; 37(2):607-14. PubMed ID: 20229869 [TBL] [Abstract][Full Text] [Related]
7. Geometrical methods for level set based abdominal aortic aneurysm thrombus and outer wall 2D image segmentation. Zohios C; Kossioris G; Papaharilaou Y Comput Methods Programs Biomed; 2012 Aug; 107(2):202-17. PubMed ID: 21880391 [TBL] [Abstract][Full Text] [Related]
8. The impact of model assumptions on results of computational mechanics in abdominal aortic aneurysm. Reeps C; Gee M; Maier A; Gurdan M; Eckstein HH; Wall WA J Vasc Surg; 2010 Mar; 51(3):679-88. PubMed ID: 20206812 [TBL] [Abstract][Full Text] [Related]
9. Bayesian tracking of elongated structures in 3D images. Schaap M; Smal I; Metz C; van Walsum T; Niessen W Inf Process Med Imaging; 2007; 20():74-85. PubMed ID: 17633690 [TBL] [Abstract][Full Text] [Related]
10. Integrating segmentation methods from the Insight Toolkit into a visualization application. Martin K; Ibáñez L; Avila L; Barré S; Kaspersen JH Med Image Anal; 2005 Dec; 9(6):579-93. PubMed ID: 16185910 [TBL] [Abstract][Full Text] [Related]
11. Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms. Shum J; DiMartino ES; Goldhamme A; Goldman DH; Acker LC; Patel G; Ng JH; Martufi G; Finol EA Med Phys; 2010 Feb; 37(2):638-48. PubMed ID: 20229873 [TBL] [Abstract][Full Text] [Related]
12. Three-dimensional morphological analysis of intracranial aneurysms: a fully automated method for aneurysm sac isolation and quantification. Larrabide I; Cruz Villa-Uriol M; Cárdenes R; Pozo JM; Macho J; San Roman L; Blasco J; Vivas E; Marzo A; Hose DR; Frangi AF Med Phys; 2011 May; 38(5):2439-49. PubMed ID: 21776779 [TBL] [Abstract][Full Text] [Related]
13. Aortic thrombus segmentation using narrow band active contour model. Das B; Mallya Y; Srikanth S; Malladi R Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():408-11. PubMed ID: 17945583 [TBL] [Abstract][Full Text] [Related]
14. Preliminary intraobserver and interobserver variability in wall stress and rupture risk assessment of abdominal aortic aneurysms using a semiautomatic finite element model. Teutelink A; Cancrinus E; van de Heuvel D; Moll F; de Vries JP J Vasc Surg; 2012 Feb; 55(2):326-30. PubMed ID: 22104340 [TBL] [Abstract][Full Text] [Related]
15. An abdominal aortic aneurysm segmentation method: level set with region and statistical information. Zhuge F; Rubin GD; Sun S; Napel S Med Phys; 2006 May; 33(5):1440-53. PubMed ID: 16752579 [TBL] [Abstract][Full Text] [Related]
16. Segmentation and quantification of the aortic arch using joint 3D model-based segmentation and elastic image registration. Biesdorf A; Rohr K; Feng D; von Tengg-Kobligk H; Rengier F; Böckler D; Kauczor HU; Wörz S Med Image Anal; 2012 Aug; 16(6):1187-201. PubMed ID: 22795524 [TBL] [Abstract][Full Text] [Related]
17. Semi-automatic level-set based segmentation and stenosis quantification of the internal carotid artery in 3D CTA data sets. Scherl H; Hornegger J; Prümmer M; Lell M Med Image Anal; 2007 Feb; 11(1):21-34. PubMed ID: 17126064 [TBL] [Abstract][Full Text] [Related]
18. A shape-guided deformable model with evolutionary algorithm initialization for 3D soft tissue segmentation. Heimann T; Münzing S; Meinzer HP; Wolf I Inf Process Med Imaging; 2007; 20():1-12. PubMed ID: 17633684 [TBL] [Abstract][Full Text] [Related]
19. Segmentation of thin structures in volumetric medical images. Holtzman-Gazit M; Kimmel R; Peled N; Goldsher D IEEE Trans Image Process; 2006 Feb; 15(2):354-63. PubMed ID: 16479805 [TBL] [Abstract][Full Text] [Related]
20. Lower extremity CT angiography the combination of digital image processing and knowledge-based patient-specific modeling. Berliner L Acad Radiol; 2009 Jun; 16(6):643-5. PubMed ID: 19427977 [No Abstract] [Full Text] [Related] [Next] [New Search]