These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Genic capture and the genetic basis of sexually selected traits in the zebra finch. Birkhead TR; Pellatt EJ; Matthews IM; Roddis NJ; Hunter FM; McPhie F; Castillo-Juarez H Evolution; 2006 Nov; 60(11):2389-98. PubMed ID: 17236429 [TBL] [Abstract][Full Text] [Related]
6. Evolutionary reduction in testes size and competitive fertilization success in response to the experimental removal of sexual selection in dung beetles. Simmons LW; García-González F Evolution; 2008 Oct; 62(10):2580-91. PubMed ID: 18691259 [TBL] [Abstract][Full Text] [Related]
7. Insights into the development and evolution of exaggerated traits using de novo transcriptomes of two species of horned scarab beetles. Warren IA; Vera JC; Johns A; Zinna R; Marden JH; Emlen DJ; Dworkin I; Lavine LC PLoS One; 2014; 9(2):e88364. PubMed ID: 24586317 [TBL] [Abstract][Full Text] [Related]
8. Sexual selection, genetic architecture, and the condition dependence of body shape in the sexually dimorphic fly Prochyliza xanthostoma (Piophilidae). Bonduriansky R; Rowe L Evolution; 2005 Jan; 59(1):138-51. PubMed ID: 15792234 [TBL] [Abstract][Full Text] [Related]
9. A Comparative Study of the Role of Sex-Specific Condition Dependence in the Evolution of Sexually Dimorphic Traits. Rohner PT; Blanckenhorn WU Am Nat; 2018 Dec; 192(6):E202-E215. PubMed ID: 30444660 [TBL] [Abstract][Full Text] [Related]
10. Evolutionary trade-off between weapons and testes. Simmons LW; Emlen DJ Proc Natl Acad Sci U S A; 2006 Oct; 103(44):16346-51. PubMed ID: 17053078 [TBL] [Abstract][Full Text] [Related]
11. A costly chemical trait: phenotypic condition dependence of cuticular hydrocarbons in a dung beetle. Berson JD; Simmons LW J Evol Biol; 2018 Dec; 31(12):1772-1781. PubMed ID: 30178526 [TBL] [Abstract][Full Text] [Related]
12. Male and female secondary sexual traits show different patterns of quantitative genetic and environmental variation in the horned beetle Onthophagus sagittarius. Watson NL; Simmons LW J Evol Biol; 2010 Nov; 23(11):2397-402. PubMed ID: 20831732 [TBL] [Abstract][Full Text] [Related]
15. Quantitative genetics of breeding coloration in sand lizards; genic capture unlikely to maintain additive genetic variance. Lindsay WR; Bererhi B; Ljungström G; Wapstra E; Olsson M Heredity (Edinb); 2023 May; 130(5):329-334. PubMed ID: 36941410 [TBL] [Abstract][Full Text] [Related]
16. Quantifying variability of avian colours: are signalling traits more variable? Delhey K; Peters A PLoS One; 2008 Feb; 3(2):e1689. PubMed ID: 18301766 [TBL] [Abstract][Full Text] [Related]
17. Evolution of ejaculates: patterns of phenotypic and genotypic variation and condition dependence in sperm competition traits. Simmons LW; Kotiaho JS Evolution; 2002 Aug; 56(8):1622-31. PubMed ID: 12353755 [TBL] [Abstract][Full Text] [Related]
18. Population differences in the strength of sexual selection match relative weapon size in the Japanese rhinoceros beetle, Trypoxylus dichotomus (Coleoptera: Scarabaeidae)†. Del Sol JF; Hongo Y; Boisseau RP; Berman GH; Allen CE; Emlen DJ Evolution; 2021 Feb; 75(2):394-413. PubMed ID: 33009663 [TBL] [Abstract][Full Text] [Related]
19. Condition-dependent expression of red colour differs between stickleback species. Boughman JW J Evol Biol; 2007 Jul; 20(4):1577-90. PubMed ID: 17584250 [TBL] [Abstract][Full Text] [Related]
20. Sexual selection can remove an experimentally induced mutation load. Almbro M; Simmons LW Evolution; 2014 Jan; 68(1):295-300. PubMed ID: 24372608 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]