BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 20335373)

  • 21. Quantification of heat shock protein mRNA expression in warm and cold anoxic turtles (Trachemys scripta) using an external RNA control for normalization.
    Stecyk JA; Couturier CS; Fagernes CE; Ellefsen S; Nilsson GE
    Comp Biochem Physiol Part D Genomics Proteomics; 2012 Mar; 7(1):59-72. PubMed ID: 22129782
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cold acclimation increases levels of some heat shock protein and sirtuin isoforms in threespine stickleback.
    Teigen LE; Orczewska JI; McLaughlin J; O'Brien KM
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Oct; 188():139-47. PubMed ID: 26123780
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Goldfish and crucian carp are natural models of anoxia tolerance in the retina.
    Country MW; Jonz MG
    Comp Biochem Physiol A Mol Integr Physiol; 2022 Aug; 270():111244. PubMed ID: 35618216
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A novel inwardly rectifying K+ channel, Kir2.5, is upregulated under chronic cold stress in fish cardiac myocytes.
    Hassinen M; Paajanen V; Vornanen M
    J Exp Biol; 2008 Jul; 211(Pt 13):2162-71. PubMed ID: 18552306
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Body mass dependence of glycogen stores in the anoxia-tolerant crucian carp (Carassius carassius L.).
    Vornanen M; Asikainen J; Haverinen J
    Naturwissenschaften; 2011 Mar; 98(3):225-32. PubMed ID: 21279319
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cell proliferation and gill morphology in anoxic crucian carp.
    Sollid J; Kjernsli A; De Angelis PM; Røhr AK; Nilsson GE
    Am J Physiol Regul Integr Comp Physiol; 2005 Oct; 289(4):R1196-201. PubMed ID: 15919732
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Brain sensitivity to anoxia in fish as reflected by changes in extracellular K+ activity.
    Nilsson GE; Pérez-Pinzón M; Dimberg K; Winberg S
    Am J Physiol; 1993 Feb; 264(2 Pt 2):R250-3. PubMed ID: 8447481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cardiac survival in anoxia-tolerant vertebrates: An electrophysiological perspective.
    Stecyk JA; Galli GL; Shiels HA; Farrell AP
    Comp Biochem Physiol C Toxicol Pharmacol; 2008 Nov; 148(4):339-54. PubMed ID: 18589002
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain Na+/K+-ATPase activity in two anoxia tolerant vertebrates: crucian carp and freshwater turtle.
    Hylland P; Milton S; Pek M; Nilsson GE; Lutz PL
    Neurosci Lett; 1997 Oct; 235(1-2):89-92. PubMed ID: 9389603
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dramatic increase of nitrite levels in hearts of anoxia-exposed crucian carp supporting a role in cardioprotection.
    Sandvik GK; Nilsson GE; Jensen FB
    Am J Physiol Regul Integr Comp Physiol; 2012 Feb; 302(4):R468-77. PubMed ID: 22129619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Seasonal and temperature-induced changes in myosin heavy chain composition of crucian carp hearts.
    Vornanen M
    Am J Physiol; 1994 Dec; 267(6 Pt 2):R1567-73. PubMed ID: 7810767
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of thermal acclimation on the relaxation system of crucian carp white myotomal muscle.
    Vornanen M; Tiitu V; Käkelä R; Aho E
    J Exp Zool; 1999 Aug; 284(3):241-51. PubMed ID: 10404115
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variations in temperature acclimation effects on glycogen storage, hypoxia tolerance and swimming performance with seasonal acclimatization in juvenile Chinese crucian carp.
    Yang Y; Cao ZD; Fu SJ
    Comp Biochem Physiol A Mol Integr Physiol; 2015 Jul; 185():16-23. PubMed ID: 25776929
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of prolyl hydroxylase domains, the upstream regulators of HIF, in the brain of the anoxia-tolerant crucian carp during anoxia-reoxygenation.
    Gerber L; Resseguier J; Helle-Valle T; Farhat E; Nilsson GE; Lefevre S
    Am J Physiol Regul Integr Comp Physiol; 2024 Feb; 326(2):R184-R195. PubMed ID: 38145292
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Long-term anoxia in crucian carp: changes in the levels of amino acid and monoamine neurotransmitters in the brain, catecholamines in chromaffin tissue, and liver glycogen.
    Nilsson GE
    J Exp Biol; 1990 May; 150():295-320. PubMed ID: 1972385
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Life without oxygen: gene regulatory responses of the crucian carp (Carassius carassius) heart subjected to chronic anoxia.
    Stensløkken KO; Ellefsen S; Vasieva O; Fang Y; Farrell AP; Olohan L; Vaage J; Nilsson GE; Cossins AR
    PLoS One; 2014; 9(11):e109978. PubMed ID: 25372666
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Turnover of serotonin in brain of an anoxia-tolerant vertebrate, the crucian carp.
    Nilsson GE
    Am J Physiol; 1990 Jun; 258(6 Pt 2):R1308-12. PubMed ID: 1694412
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does anoxia induce cell swelling in carp brains? In vivo MRI measurements in crucian carp and common carp.
    Van der Linden A; Verhoye M; Nilsson GE
    J Neurophysiol; 2001 Jan; 85(1):125-33. PubMed ID: 11152713
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Maintained cardiac pumping in anoxic crucian carp.
    Stecyk JA; Stensløkken KO; Farrell AP; Nilsson GE
    Science; 2004 Oct; 306(5693):77. PubMed ID: 15459381
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of anoxia on catecholamine levels in brain and kidney of the crucian carp.
    Nilsson GE
    Am J Physiol; 1989 Jul; 257(1 Pt 2):R10-4. PubMed ID: 2750953
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.