These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 20335483)

  • 1. Demonstration of a neural circuit critical for imprinting behavior in chicks.
    Nakamori T; Sato K; Atoji Y; Kanamatsu T; Tanaka K; Ohki-Hamazaki H
    J Neurosci; 2010 Mar; 30(12):4467-80. PubMed ID: 20335483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural basis of imprinting behavior in chicks.
    Nakamori T; Maekawa F; Sato K; Tanaka K; Ohki-Hamazaki H
    Dev Growth Differ; 2013 Jan; 55(1):198-206. PubMed ID: 23294362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Neurobiology of imprinting].
    Ohki-Hamazaki H
    Brain Nerve; 2012 Jun; 64(6):657-64. PubMed ID: 22647473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Positive feedback of NR2B-containing NMDA receptor activity is the initial step toward visual imprinting: a model for juvenile learning.
    Nakamori T; Sato K; Kinoshita M; Kanamatsu T; Sakagami H; Tanaka K; Ohki-Hamazaki H
    J Neurochem; 2015 Jan; 132(1):110-23. PubMed ID: 25270582
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Imprinting modulates processing of visual information in the visual wulst of chicks.
    Maekawa F; Komine O; Sato K; Kanamatsu T; Uchimura M; Tanaka K; Ohki-Hamazaki H
    BMC Neurosci; 2006 Nov; 7():75. PubMed ID: 17101060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Elevated expression of brain-derived neurotrophic factor facilitates visual imprinting in chicks.
    Suzuki K; Maekawa F; Suzuki S; Nakamori T; Sugiyama H; Kanamatsu T; Tanaka K; Ohki-Hamazaki H
    J Neurochem; 2012 Dec; 123(5):800-10. PubMed ID: 23094873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of cholecystokinin neurons in the dorsal pallium of the telencephalon is indispensable for the acquisition of chick imprinting behavior.
    Maekawa F; Nakamori T; Uchimura M; Fujiwara K; Yada T; Tsukahara S; Kanamatsu T; Tanaka K; Ohki-Hamazaki H
    J Neurochem; 2007 Sep; 102(5):1645-1657. PubMed ID: 17697050
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of visual Wulst cell responsiveness by imprinting causes stimulus-specific activation of rostral cells.
    Nakamori T; Kato T; Sakagami H; Tanaka K; Ohki-Hamazaki H
    Sci Rep; 2017 Feb; 7():42927. PubMed ID: 28230107
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical role of the neural pathway from the intermediate medial mesopallium to the intermediate hyperpallium apicale in filial imprinting of domestic chicks (Gallus gallus domesticus).
    Aoki N; Yamaguchi S; Kitajima T; Takehara A; Katagiri-Nakagawa S; Matsui R; Watanabe D; Matsushima T; Homma KJ
    Neuroscience; 2015 Nov; 308():115-24. PubMed ID: 26362886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diminished neuronal activity increases neuron-neuron connectivity underlying silent synapse formation and the rapid conversion of silent to functional synapses.
    Nakayama K; Kiyosue K; Taguchi T
    J Neurosci; 2005 Apr; 25(16):4040-51. PubMed ID: 15843606
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential projections of the densocellular and intermediate parts of the hyperpallium in the pigeon (Columba livia).
    Atoji Y; Sarkar S; Wild JM
    J Comp Neurol; 2018 Jan; 526(1):146-165. PubMed ID: 28891049
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual input modulates audiomotor function via hypothalamic dopaminergic neurons through a cooperative mechanism.
    Mu Y; Li XQ; Zhang B; Du JL
    Neuron; 2012 Aug; 75(4):688-99. PubMed ID: 22920259
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neuronal plasticity and multisensory integration in filial imprinting.
    Town SM; McCabe BJ
    PLoS One; 2011 Mar; 6(3):e17777. PubMed ID: 21423770
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synaptic pharmacology in the turtle accessory optic system.
    Kogo N; Fan TX; Ariel M
    Exp Brain Res; 2002 Dec; 147(4):464-72. PubMed ID: 12444478
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distal connectivity causes summation and division across mouse visual cortex.
    Sato TK; Häusser M; Carandini M
    Nat Neurosci; 2014 Jan; 17(1):30-2. PubMed ID: 24241394
    [TBL] [Abstract][Full Text] [Related]  

  • 16. mGluR5 Exerts Cell-Autonomous Influences on the Functional and Anatomical Development of Layer IV Cortical Neurons in the Mouse Primary Somatosensory Cortex.
    Ballester-Rosado CJ; Sun H; Huang JY; Lu HC
    J Neurosci; 2016 Aug; 36(34):8802-14. PubMed ID: 27559164
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid induction of the immediate early gene c-fos in a chick forebrain system involved in memory.
    Suge R; Kato H; McCabe BJ
    Exp Brain Res; 2010 Jan; 200(2):183-8. PubMed ID: 19756549
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Early network activity propagates bidirectionally between hippocampus and cortex.
    Barger Z; Easton CR; Neuzil KE; Moody WJ
    Dev Neurobiol; 2016 Jun; 76(6):661-72. PubMed ID: 26385616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glutamatergic Kölliker-Fuse nucleus neurons innervate hypoglossal motoneurons whose axons form the medial (protruder) branch of the hypoglossal nerve in the rat.
    Yokota S; Niu JG; Tsumori T; Oka T; Yasui Y
    Brain Res; 2011 Aug; 1404():10-20. PubMed ID: 21724177
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Irreversible loss of a subpopulation of cortical interneurons in the absence of glutamatergic network activity.
    de Lima AD; Opitz T; Voigt T
    Eur J Neurosci; 2004 Jun; 19(11):2931-43. PubMed ID: 15182300
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.