These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 20335538)

  • 1. Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate.
    Silverman SJ; Petti AA; Slavov N; Parsons L; Briehof R; Thiberge SY; Zenklusen D; Gandhi SJ; Larson DR; Singer RH; Botstein D
    Proc Natl Acad Sci U S A; 2010 Apr; 107(15):6946-51. PubMed ID: 20335538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Homeostatic adjustment and metabolic remodeling in glucose-limited yeast cultures.
    Brauer MJ; Saldanha AJ; Dolinski K; Botstein D
    Mol Biol Cell; 2005 May; 16(5):2503-17. PubMed ID: 15758028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast.
    Slavov N; Botstein D
    Mol Biol Cell; 2011 Jun; 22(12):1997-2009. PubMed ID: 21525243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabolic cycling without cell division cycling in respiring yeast.
    Slavov N; Macinskas J; Caudy A; Botstein D
    Proc Natl Acad Sci U S A; 2011 Nov; 108(47):19090-5. PubMed ID: 22065748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Physiology of Non-Energy-Limited Retentostat Cultures of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates.
    Liu Y; El Masoudi A; Pronk JT; van Gulik WM
    Appl Environ Microbiol; 2019 Oct; 85(20):. PubMed ID: 31375494
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Coordination of growth rate, cell cycle, stress response, and metabolic activity in yeast.
    Brauer MJ; Huttenhower C; Airoldi EM; Rosenstein R; Matese JC; Gresham D; Boer VM; Troyanskaya OG; Botstein D
    Mol Biol Cell; 2008 Jan; 19(1):352-67. PubMed ID: 17959824
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating gene expression dynamics using pairwise RNA FISH data.
    Wyart M; Botstein D; Wingreen NS
    PLoS Comput Biol; 2010 Nov; 6(11):e1000979. PubMed ID: 21079668
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Behavior of a metabolic cycling population at the single cell level as visualized by fluorescent gene expression reporters.
    Laxman S; Sutter BM; Tu BP
    PLoS One; 2010 Sep; 5(9):e12595. PubMed ID: 20830298
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glucose uptake kinetics and transcription of HXT genes in chemostat cultures of Saccharomyces cerevisiae.
    Diderich JA; Schepper M; van Hoek P; Luttik MA; van Dijken JP; Pronk JT; Klaassen P; Boelens HF; de Mattos MJ; van Dam K; Kruckeberg AL
    J Biol Chem; 1999 May; 274(22):15350-9. PubMed ID: 10336421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interaction of the GTS1 gene product with glyceraldehyde- 3-phosphate dehydrogenase 1 required for the maintenance of the metabolic oscillations of the yeast Saccharomyces cerevisiae.
    Liu W; Wang J; Mitsui K; Shen H; Tsurugi K
    Eur J Biochem; 2002 Jul; 269(14):3560-9. PubMed ID: 12135496
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nutritional homeostasis in batch and steady-state culture of yeast.
    Saldanha AJ; Brauer MJ; Botstein D
    Mol Biol Cell; 2004 Sep; 15(9):4089-104. PubMed ID: 15240820
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Flavin-based metabolic cycles are integral features of growth and division in single yeast cells.
    Baumgartner BL; O'Laughlin R; Jin M; Tsimring LS; Hao N; Hasty J
    Sci Rep; 2018 Dec; 8(1):18045. PubMed ID: 30575765
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The repertoire and dynamics of evolutionary adaptations to controlled nutrient-limited environments in yeast.
    Gresham D; Desai MM; Tucker CM; Jenq HT; Pai DA; Ward A; DeSevo CG; Botstein D; Dunham MJ
    PLoS Genet; 2008 Dec; 4(12):e1000303. PubMed ID: 19079573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations.
    Boer VM; Crutchfield CA; Bradley PH; Botstein D; Rabinowitz JD
    Mol Biol Cell; 2010 Jan; 21(1):198-211. PubMed ID: 19889834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of transcription and translation of glycolytic enzymes in glucose-limited continuous cultures of Saccharomyces cerevisiae.
    Sierkstra LN; Verbakel JM; Verrips CT
    J Gen Microbiol; 1992 Dec; 138(12):2559-66. PubMed ID: 1487726
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sudden depletion of carbon source blocks translation, but not transcription, in the yeast Saccharomyces cerevisiae.
    Martínez-Pastor MT; Estruch F
    FEBS Lett; 1996 Jul; 390(3):319-22. PubMed ID: 8706886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A conserved cell growth cycle can account for the environmental stress responses of divergent eukaryotes.
    Slavov N; Airoldi EM; van Oudenaarden A; Botstein D
    Mol Biol Cell; 2012 May; 23(10):1986-97. PubMed ID: 22456505
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome wide oscillations in expression. Wavelet analysis of time series data from yeast expression arrays uncovers the dynamic architecture of phenotype.
    Klevecz RR; Murray DB
    Mol Biol Rep; 2001; 28(2):73-82. PubMed ID: 11931391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Understanding the growth phenotype of the yeast gcr1 mutant in terms of global genomic expression patterns.
    López MC; Baker HV
    J Bacteriol; 2000 Sep; 182(17):4970-8. PubMed ID: 10940042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Global analysis of nutrient control of gene expression in Saccharomyces cerevisiae during growth and starvation.
    Wu J; Zhang N; Hayes A; Panoutsopoulou K; Oliver SG
    Proc Natl Acad Sci U S A; 2004 Mar; 101(9):3148-53. PubMed ID: 14973188
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.