BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 20335617)

  • 1. Cold-sensitive corneal afferents respond to a variety of ocular stimuli central to tear production: implications for dry eye disease.
    Hirata H; Meng ID
    Invest Ophthalmol Vis Sci; 2010 Aug; 51(8):3969-76. PubMed ID: 20335617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hyperosmolar tears enhance cooling sensitivity of the corneal nerves in rats: possible neural basis for cold-induced dry eye pain.
    Hirata H; Rosenblatt MI
    Invest Ophthalmol Vis Sci; 2014 Aug; 55(9):5821-33. PubMed ID: 25139732
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corneal dry-responsive neurons in the spinal trigeminal nucleus respond to innocuous cooling in the rat.
    Kurose M; Meng ID
    J Neurophysiol; 2013 May; 109(10):2517-22. PubMed ID: 23446686
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ocular dryness excites two classes of corneal afferent neurons implicated in basal tearing in rats: involvement of transient receptor potential channels.
    Hirata H; Oshinsky ML
    J Neurophysiol; 2012 Feb; 107(4):1199-209. PubMed ID: 22114162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of corneal afferent neurons in regulating tears under normal and dry eye conditions.
    Meng ID; Kurose M
    Exp Eye Res; 2013 Dec; 117():79-87. PubMed ID: 23994439
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hyperosmolar Tears Induce Functional and Structural Alterations of Corneal Nerves: Electrophysiological and Anatomical Evidence Toward Neurotoxicity.
    Hirata H; Mizerska K; Marfurt CF; Rosenblatt MI
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):8125-40. PubMed ID: 26720465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the Osmolarities of Tears During Evaporation Through the "Eyes" of the Corneal Nerves.
    Hirata H; Mizerska K; Dallacasagrande V; Rosenblatt MI
    Invest Ophthalmol Vis Sci; 2017 Jan; 58(1):168-178. PubMed ID: 28114576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of TRPM8 Channels in Altered Cold Sensitivity of Corneal Primary Sensory Neurons Induced by Axonal Damage.
    Piña R; Ugarte G; Campos M; Íñigo-Portugués A; Olivares E; Orio P; Belmonte C; Bacigalupo J; Madrid R
    J Neurosci; 2019 Oct; 39(41):8177-8192. PubMed ID: 31471469
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tear fluid hyperosmolality increases nerve impulse activity of cold thermoreceptor endings of the cornea.
    Parra A; Gonzalez-Gonzalez O; Gallar J; Belmonte C
    Pain; 2014 Aug; 155(8):1481-1491. PubMed ID: 24785271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ambient Air Currents Activate Corneal Nerves During Ocular Desiccation in Rats: Simultaneous Recordings of Neural Activity and Corneal Temperature.
    Hirata H; Dallacasagrande V; Mizerska K; Ivakhnitskaia E; Rosenblatt MI
    Invest Ophthalmol Vis Sci; 2018 Aug; 59(10):4031-4043. PubMed ID: 30098191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Abnormal activity of corneal cold thermoreceptors underlies the unpleasant sensations in dry eye disease.
    Kovács I; Luna C; Quirce S; Mizerska K; Callejo G; Riestra A; Fernández-Sánchez L; Meseguer VM; Cuenca N; Merayo-Lloves J; Acosta MC; Gasull X; Belmonte C; Gallar J
    Pain; 2016 Feb; 157(2):399-417. PubMed ID: 26675826
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cold thermoreceptors, unexpected players in tear production and ocular dryness sensations.
    Belmonte C; Gallar J
    Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3888-92. PubMed ID: 21632706
    [No Abstract]   [Full Text] [Related]  

  • 13. Quantitative characterization reveals three types of dry-sensitive corneal afferents: pattern of discharge, receptive field, and thermal and chemical sensitivity.
    Hirata H; Fried N; Oshinsky ML
    J Neurophysiol; 2012 Nov; 108(9):2481-93. PubMed ID: 22914652
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory Effect of Amitriptyline on the Impulse Activity of Cold Thermoreceptor Terminals of Intact and Tear-Deficient Guinea Pig Corneas.
    Masuoka T; Gallar J; Belmonte C
    J Ocul Pharmacol Ther; 2018; 34(1-2):195-203. PubMed ID: 29185841
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel class of neurons at the trigeminal subnucleus interpolaris/caudalis transition region monitors ocular surface fluid status and modulates tear production.
    Hirata H; Okamoto K; Tashiro A; Bereiter DA
    J Neurosci; 2004 Apr; 24(17):4224-32. PubMed ID: 15115818
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dry eye modifies the thermal and menthol responses in rat corneal primary afferent cool cells.
    Kurose M; Meng ID
    J Neurophysiol; 2013 Jul; 110(2):495-504. PubMed ID: 23636717
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neurons in the rat spinal trigeminal complex driven by corneal nociceptors: receptive-field properties and effects of noxious stimulation of the cornea.
    Pozo MA; Cervero F
    J Neurophysiol; 1993 Dec; 70(6):2370-8. PubMed ID: 8120588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of orofacial thermoreceptive neurons in the superficial medullary dorsal horn of the rat.
    Hutchison WD; Tsoukatos J; Dostrovsky JO
    J Neurophysiol; 1997 Jun; 77(6):3252-66. PubMed ID: 9212272
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Menthol activation of corneal cool cells induces TRPM8-mediated lacrimation but not nociceptive responses in rodents.
    Robbins A; Kurose M; Winterson BJ; Meng ID
    Invest Ophthalmol Vis Sci; 2012 Oct; 53(11):7034-42. PubMed ID: 22952122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dry eye sensitizes cool cells to capsaicin-induced changes in activity via TRPV1.
    Hatta A; Kurose M; Sullivan C; Okamoto K; Fujii N; Yamamura K; Meng ID
    J Neurophysiol; 2019 Jun; 121(6):2191-2201. PubMed ID: 30969886
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.