These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 20335796)
1. Shear rate and hematocrit effects on the apparent diffusivity of urea in suspensions of bovine erythrocytes. Nanne EE; Aucoin CP; Leonard EF ASAIO J; 2010; 56(3):151-6. PubMed ID: 20335796 [TBL] [Abstract][Full Text] [Related]
2. Magnetic resonance microscopy determined velocity and hematocrit distributions in a Couette viscometer. Cokelet GR; Brown JR; Codd SL; Seymour JD Biorheology; 2005; 42(5):385-99. PubMed ID: 16308468 [TBL] [Abstract][Full Text] [Related]
3. Ultrasonic backscatter from flowing whole blood. I: Dependence on shear rate and hematocrit. Yuan YW; Shung KK J Acoust Soc Am; 1988 Jul; 84(1):52-8. PubMed ID: 3411055 [TBL] [Abstract][Full Text] [Related]
4. The pressure-flow relation in resting rat skeletal muscle perfused with pure erythrocyte suspensions. Sutton DW; Schmid-Schönbein GW Biorheology; 1995; 32(1):29-42. PubMed ID: 7548859 [TBL] [Abstract][Full Text] [Related]
5. Flows of red blood cell suspensions through narrow two-dimensional channels. Chan T; Jaffrin MY; Seshadri V; Mc Kay C Biorheology; 1982; 19(1/2):253-67. PubMed ID: 6807368 [TBL] [Abstract][Full Text] [Related]
6. Erythrocyte concentration distribution in sheathed microfluidic flows. Aucoin CP; Nanne EE; Leonard EF ASAIO J; 2009; 55(5):423-7. PubMed ID: 19584710 [TBL] [Abstract][Full Text] [Related]
7. The intensity reflection coefficient: a complementary method for investigating blood backscattering properties with ultrasound. Amararene A; Cloutier G Clin Hemorheol Microcirc; 2008; 38(3):189-200. PubMed ID: 18239261 [TBL] [Abstract][Full Text] [Related]
8. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Tilles AW; Eckstein EC Microvasc Res; 1987 Mar; 33(2):211-23. PubMed ID: 3587076 [TBL] [Abstract][Full Text] [Related]
9. Inertial migration of cancer cells in blood flow in microchannels. Tanaka T; Ishikawa T; Numayama-Tsuruta K; Imai Y; Ueno H; Yoshimoto T; Matsuki N; Yamaguchi T Biomed Microdevices; 2012 Feb; 14(1):25-33. PubMed ID: 21898009 [TBL] [Abstract][Full Text] [Related]
10. Effect of hematocrit on adenosine diphosphate-induced aggregation of human platelets in tube flow. Goldsmith HL; Kaufer ES; McIntosh FA Biorheology; 1995; 32(5):537-52. PubMed ID: 8541523 [TBL] [Abstract][Full Text] [Related]
11. Quantification of red blood cell deformation at high-hematocrit blood flow in microvessels. Alizadehrad D; Imai Y; Nakaaki K; Ishikawa T; Yamaguchi T J Biomech; 2012 Oct; 45(15):2684-9. PubMed ID: 22981440 [TBL] [Abstract][Full Text] [Related]
12. Conductometric study of shear-dependent processes in red cell suspensions. II. Transient cross-stream hematocrit distribution. Pribush A; Meyerstein D; Meiselman HJ; Meyerstein N Biorheology; 2004; 41(1):29-43. PubMed ID: 14967888 [TBL] [Abstract][Full Text] [Related]
13. Measurement of individual red blood cell motions under high hematocrit conditions using a confocal micro-PTV system. Lima R; Ishikawa T; Imai Y; Takeda M; Wada S; Yamaguchi T Ann Biomed Eng; 2009 Aug; 37(8):1546-59. PubMed ID: 19521772 [TBL] [Abstract][Full Text] [Related]
14. Complex viscosity of bovine red blood cells in suspensions. Sakanishi A; Ferry JD Biorheology; 1983; 20(5):519-29. PubMed ID: 6203571 [TBL] [Abstract][Full Text] [Related]
15. Rheology of concentrated suspensions of deformable elastic particles such as human erythrocytes. Pal R J Biomech; 2003 Jul; 36(7):981-9. PubMed ID: 12757807 [TBL] [Abstract][Full Text] [Related]
16. Ultrasonic backscatter from flowing whole blood. II: Dependence on frequency and fibrinogen concentration. Yuan YW; Shung KK J Acoust Soc Am; 1988 Oct; 84(4):1195-200. PubMed ID: 3058769 [TBL] [Abstract][Full Text] [Related]
17. Comparative rheology of nucleated and non-nucleated red blood cells. II. Rheological properties of avian red cells suspensions in narrow capillaries. Gaehtgens P; Will G; Schmidt F Pflugers Arch; 1981 Jun; 390(3):283-7. PubMed ID: 7196029 [TBL] [Abstract][Full Text] [Related]
18. Effect of hematocrit on wall shear rate in oscillatory flow: do the elastic properties of blood play a role? Brookshier KK; Tarbell JM Biorheology; 1991; 28(6):569-87. PubMed ID: 1818745 [TBL] [Abstract][Full Text] [Related]
19. Survival of 59Fe-labeled erythrocytes in cross-transfused bovine blood. Kallfelz FA; Whitlock RH Am J Vet Res; 1973 Aug; 34(8):1041-4. PubMed ID: 4755772 [No Abstract] [Full Text] [Related]
20. The bulk rheology of close-packed red blood cells in shear flow. Secomb TW; Chien S; Jan KM; Skalak R Biorheology; 1983; 20(3):295-309. PubMed ID: 6626714 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]