These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 20335796)

  • 21. Effect of perfusate hematocrit on urea permeability-surface area in isolated dog lung.
    Parker RE; Roselli RJ; Haselton FR; Harris TR
    J Appl Physiol (1985); 1986 Oct; 61(4):1383-7. PubMed ID: 3781954
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of margination of platelet-sized particles in red blood cell suspensions flowing through Y-shaped bifurcating microchannels.
    Sugihara-Seki M; Onozawa T; Takinouchi N; Itano T; Seki J
    Biorheology; 2020; 57(2-4):101-116. PubMed ID: 33523035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An estimated shape function for drift in a platelet-transport model.
    Yeh C; Calvez AC; Eckstein EC
    Biophys J; 1994 Sep; 67(3):1252-9. PubMed ID: 7811940
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lift and down-gradient shear-induced diffusion in red blood cell suspensions.
    Grandchamp X; Coupier G; Srivastav A; Minetti C; Podgorski T
    Phys Rev Lett; 2013 Mar; 110(10):108101. PubMed ID: 23521300
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effect of flow disturbance on ultrasonic backscatter from blood.
    Shung KK; Yuan YW; Fei DY; Tarbell JM
    J Acoust Soc Am; 1984 Apr; 75(4):1265-72. PubMed ID: 6725778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of normal human erythrocytes on blood rheology in microcirculation.
    Hirata C; Kobayashi H; Mizuno N; Kutsuna H; Ishina K; Ishii M
    Osaka City Med J; 2007 Dec; 53(2):73-85. PubMed ID: 18432063
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Buffering properties of red cell suspensions with variations of hematocrit.
    Nissen P; Heisler N; Piiper J
    Pflugers Arch; 1972; 332():Suppl 332:R2. PubMed ID: 5065997
    [No Abstract]   [Full Text] [Related]  

  • 28. Experimental evaluation of mechanical and electrical properties of RBC suspensions under flow. Role of RBC aggregating agent.
    Antonova N; Riha P; Ivanov I
    Clin Hemorheol Microcirc; 2010; 45(2-4):253-61. PubMed ID: 20675907
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Hemodynamic effects of exchange transfusions with liposome-encapsulated hemoglobin.
    Miller IF; Mayoral J; Djordjevich L; Kashani A
    Biomater Artif Cells Artif Organs; 1988; 16(1-3):281-8. PubMed ID: 3140919
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Measurement of erythrocyte orientation in flow by spin labeling III--erythrocyte orientation and rheological conditions.
    Bitbol M; Leterrier F; Dufaux J; Quemada D
    Biorheology; 1985; 22(1):43-53. PubMed ID: 3986318
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The viscosity of erythrocyte suspensions. A review of theory.
    HAYNES RH
    Biophys J; 1962 Jan; 2(1):95-103. PubMed ID: 13905677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparative microrheology of blood: effect of desaggregation and cell fluidity on shear thinning of human and bovine blood.
    Schmid-Schönbein H; von Gosen J; Klose HJ
    Biorheology; 1973 Dec; 10(4):545-51. PubMed ID: 4783686
    [No Abstract]   [Full Text] [Related]  

  • 33. The hematocrit-erythrocyte-disaggregation-apparatus (HEDA).
    Kiesewetter H; Mrowietz C; Lazar H; Jung F
    Biorheology Suppl; 1984; 1():213-5. PubMed ID: 6591978
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Viscosity measurements for LEH suspended in different plasma expanders.
    Chung TW; Wang JF
    Artif Cells Blood Substit Immobil Biotechnol; 1997 Jul; 25(4):393-406. PubMed ID: 9242934
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Decreased hydrodynamic resistance in the two-phase flow of blood through small vertical tubes at low flow rates.
    Cokelet GR; Goldsmith HL
    Circ Res; 1991 Jan; 68(1):1-17. PubMed ID: 1984854
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamics of blood flow: modeling of Fåhraeus and Fåhraeus-Lindqvist effects using a shear-induced red blood cell migration model.
    Chebbi R
    J Biol Phys; 2018 Dec; 44(4):591-603. PubMed ID: 30219980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. What can we learn from Einstein and Arrhenius about the optimal flow of our blood?
    Schuster S; Stark H
    Biochim Biophys Acta; 2014 Jan; 1840(1):271-6. PubMed ID: 24021886
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Transverse water relaxation in whole blood and erythrocytes at 3T, 7T, 9.4T, 11.7T and 16.4T; determination of intracellular hemoglobin and extracellular albumin relaxivities.
    Grgac K; Li W; Huang A; Qin Q; van Zijl PC
    Magn Reson Imaging; 2017 May; 38():234-249. PubMed ID: 27993533
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A semi-empirical model for flow or blood and other particulate suspensions through narrow tubes.
    Das RN; Seshadri V
    Bull Math Biol; 1975 Oct; 37(5):459-70. PubMed ID: 1201370
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Capillary pore rheology of erythrocytes. II. A method for the preparation of leucocyte-poor erythrocyte suspensions suitable for capillary pore rheometry.
    Lingard PS
    Microvasc Res; 1974 Sep; 8(2):181-91. PubMed ID: 4140458
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.