BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

893 related articles for article (PubMed ID: 20336251)

  • 1. Reference MP2/CBS and CCSD(T) quantum-chemical calculations on stacked adenine dimers. Comparison with DFT-D, MP2.5, SCS(MI)-MP2, M06-2X, CBS(SCS-D) and force field descriptions.
    Morgado CA; Jurecka P; Svozil D; Hobza P; Sponer J
    Phys Chem Chem Phys; 2010 Apr; 12(14):3522-34. PubMed ID: 20336251
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly accurate CCSD(T) and DFT-SAPT stabilization energies of H-bonded and stacked structures of the uracil dimer.
    Pitonák M; Riley KE; Neogrády P; Hobza P
    Chemphyschem; 2008 Aug; 9(11):1636-44. PubMed ID: 18574830
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Balance of Attraction and Repulsion in Nucleic-Acid Base Stacking: CCSD(T)/Complete-Basis-Set-Limit Calculations on Uracil Dimer and a Comparison with the Force-Field Description.
    Morgado CA; Jurečka P; Svozil D; Hobza P; Šponer J
    J Chem Theory Comput; 2009 Jun; 5(6):1524-44. PubMed ID: 26609846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On geometries of stacked and H-bonded nucleic acid base pairs determined at various DFT, MP2, and CCSD(T) levels up to the CCSD(T)/complete basis set limit level.
    Dabkowska I; Jurecka P; Hobza P
    J Chem Phys; 2005 May; 122(20):204322. PubMed ID: 15945739
    [TBL] [Abstract][Full Text] [Related]  

  • 5. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment.
    Jurecka P; Hobza P
    J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scope and limitations of the SCS-MP2 method for stacking and hydrogen bonding interactions.
    Bachorz RA; Bischoff FA; Höfener S; Klopper W; Ottiger P; Leist R; Frey JA; Leutwyler S
    Phys Chem Chem Phys; 2008 May; 10(19):2758-66. PubMed ID: 18464991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmark database on isolated small peptides containing an aromatic side chain: comparison between wave function and density functional theory methods and empirical force field.
    Valdes H; Pluhácková K; Pitonák M; Rezác J; Hobza P
    Phys Chem Chem Phys; 2008 May; 10(19):2747-57. PubMed ID: 18464990
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the importance of electron correlation effects for the intramolecular stacking geometry of a bis-thiophene derivative.
    Pluhácková K; Grimme S; Hobza P
    J Phys Chem A; 2008 Dec; 112(48):12469-74. PubMed ID: 18998658
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels.
    Dabkowska I; Gonzalez HV; Jurecka P; Hobza P
    J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of aromatic NH···π, OH···π, and CH···π interactions of alanine using MP2, CCSD, and DFT methods.
    Mohan N; Vijayalakshmi KP; Koga N; Suresh CH
    J Comput Chem; 2010 Dec; 31(16):2874-82. PubMed ID: 20928850
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An assessment of theoretical methods for nonbonded interactions: comparison to complete basis set limit coupled-cluster potential energy curves for the benzene dimer, the methane dimer, benzene-methane, and benzene-H2S.
    Sherrill CD; Takatani T; Hohenstein EG
    J Phys Chem A; 2009 Sep; 113(38):10146-59. PubMed ID: 19689152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MP2.5 and MP2.X: approaching CCSD(T) quality description of noncovalent interaction at the cost of a single CCSD iteration.
    Sedlak R; Riley KE; Řezáč J; Pitoňák M; Hobza P
    Chemphyschem; 2013 Mar; 14(4):698-707. PubMed ID: 23315749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Performance of spin-component-scaled Møller-Plesset theory (SCS-MP2) for potential energy curves of noncovalent interactions.
    Takatani T; David Sherrill C
    Phys Chem Chem Phys; 2007 Dec; 9(46):6106-14. PubMed ID: 18167585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Scaled MP3 non-covalent interaction energies agree closely with accurate CCSD(T) benchmark data.
    Pitonák M; Neogrády P; Cerný J; Grimme S; Hobza P
    Chemphyschem; 2009 Jan; 10(1):282-9. PubMed ID: 19115327
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular modeling of phenothiazine derivatives: self-assembling properties.
    Bende A; Grosu I; Turcu I
    J Phys Chem A; 2010 Dec; 114(47):12479-89. PubMed ID: 21049959
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Basis set consistent revision of the S22 test set of noncovalent interaction energies.
    Takatani T; Hohenstein EG; Malagoli M; Marshall MS; Sherrill CD
    J Chem Phys; 2010 Apr; 132(14):144104. PubMed ID: 20405982
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is spin-component scaled second-order Møller-Plesset perturbation theory an appropriate method for the study of noncovalent interactions in molecules?
    Antony J; Grimme S
    J Phys Chem A; 2007 Jun; 111(22):4862-8. PubMed ID: 17506533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Probing phenylalanine/adenine pi-stacking interactions in protein complexes with explicitly correlated and CCSD(T) computations.
    Copeland KL; Anderson JA; Farley AR; Cox JR; Tschumper GS
    J Phys Chem B; 2008 Nov; 112(45):14291-5. PubMed ID: 18922031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the effects of heterogeneity on delocalized pi...pi interaction energies.
    Bates DM; Anderson JA; Oloyede P; Tschumper GS
    Phys Chem Chem Phys; 2008 May; 10(19):2775-9. PubMed ID: 18464993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 45.