BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 20336823)

  • 1. Mechanism of the formation for thoracic impedance change.
    Kuang MX; Xiao QJ; Cui CY; Kuang NZ; Hong WQ; Hu AR
    Ann Biomed Eng; 2010 Mar; 38(3):1007-16. PubMed ID: 20336823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thoracic impedance change equation deduced on the basis of parallel impedance model and Ohm's law.
    Qiu-Jin X; Zhen W; Ming-Xing K; Ping W; Pei L; Jian-Feng J
    Med Phys; 2012 Feb; 39(2):1042-5. PubMed ID: 22320814
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational modelling of blood-flow-induced changes in blood electrical conductivity and its contribution to the impedance cardiogram.
    Trakic A; Akhand M; Wang H; Mason D; Liu F; Wilson S; Crozier S
    Physiol Meas; 2010 Jan; 31(1):13-33. PubMed ID: 19940342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging of thoracic blood volume changes during the heart cycle with electrical impedance using a linear spot-electrode array.
    Hoetink AE; Faes TJ; Marcus JT; Kerkkamp HJ; Heethaar RM
    IEEE Trans Med Imaging; 2002 Jun; 21(6):653-61. PubMed ID: 12166862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental and numerical study on optimal spot-electrodes arrays in transthoracic electrical impedance cardiography.
    Ikarashi A; Nogawa M; Tanaka S; Yamakoshi K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():4580-3. PubMed ID: 18003025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thoracic geometry and its relation to electrical current distribution: consequences for electrode placement in electrical impedance cardiography.
    Raaijmakers E; Faes TJ; Goovaerts HG; Meijer JH; de Vries PM; Heethaar RM
    Med Biol Eng Comput; 1998 Sep; 36(5):592-7. PubMed ID: 10367443
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A finite-element study of the effects of electrode position on the measured impedance change in impedance cardiography.
    Wang Y; Haynor DR; Kim Y
    IEEE Trans Biomed Eng; 2001 Dec; 48(12):1390-401. PubMed ID: 11759920
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards a theoretical understanding of stroke volume estimation with impedance cardiography.
    Faes TJ; Raaijmakers E; Meijer JH; Goovaerts HG; Heethaar RM
    Ann N Y Acad Sci; 1999 Apr; 873():128-34. PubMed ID: 10372160
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The electrical impedance of pulsatile blood flowing through rigid tubes: a theoretical investigation.
    Gaw RL; Cornish BH; Thomas BJ
    IEEE Trans Biomed Eng; 2008 Feb; 55(2 Pt 1):721-7. PubMed ID: 18270009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analyzing the formation of normal and abnormal O waves in thoracic impedance graph using the impedance change components for aorta, blood vessels in lung and ventricles.
    Kuang NZ; Xiao QJ; He BQ; Fu JJ; Kuang MX
    Cardiol J; 2014; 21(2):176-82. PubMed ID: 24526509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Movement artefact rejection in impedance pneumography using six strategically placed electrodes.
    Khambete ND; Brown BH; Smallwood RH
    Physiol Meas; 2000 Feb; 21(1):79-88. PubMed ID: 10720002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimal tissue types in the thoracic electrical impedance model for thoracic electrical bioimpedance (TEB) studies.
    Akhand M; Trakic A; Terril P; Liu F; Wilson S; Crozier S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():3913-6. PubMed ID: 19964319
    [TBL] [Abstract][Full Text] [Related]  

  • 13. MEFS - MIND electrical impedance tomography forward solver.
    Yang F; Zhang J; Patterson R
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():3105-8. PubMed ID: 21096587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Descending aortic flow contribution to intrathoracic impedance-development and preliminary testing of a dual impedance model.
    Baker AB; McLeod CN; Roxburgh AJ; Bannister P
    J Clin Monit Comput; 2008 Feb; 22(1):11-22. PubMed ID: 18004667
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impedance imaging of lung ventilation: do we need to account for chest expansion?
    Adler A; Guardo R; Berthiaume Y
    IEEE Trans Biomed Eng; 1996 Apr; 43(4):414-20. PubMed ID: 8626190
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sensitivity distributions of impedance cardiography using band and spot electrodes analyzed by a three-dimensional computer model.
    Kauppinen PK; Hyttinen JA; Malmivuo JA
    Ann Biomed Eng; 1998; 26(4):694-702. PubMed ID: 9662161
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three dimensional electrical impedance tomography in thorax complete model.
    Wu H; Xu G; Yu H; Zhang S; Li Y; Yang S; Yan W
    Annu Int Conf IEEE Eng Med Biol Soc; 2008; 2008():466-9. PubMed ID: 19162694
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple sources of the impedance cardiogram based on 3-D finite difference human thorax models.
    Wang L; Patterson R
    IEEE Trans Biomed Eng; 1995 Feb; 42(2):141-8. PubMed ID: 7868141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of physiological sources on the impedance cardiogram analyzed using 4D FEM simulations.
    Ulbrich M; Mühlsteff J; Leonhardt S; Walter M
    Physiol Meas; 2014 Jul; 35(7):1451-68. PubMed ID: 24901446
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An optimal spot-electrodes array for electrical impedance cardiography through determination of impedance mapping of a regional area along the medial line on the thorax.
    Ikarashi A; Nogawa M; Yamakoshi T; Tanaka S; Yamakoshi K
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():3202-5. PubMed ID: 17947015
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.