These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

66 related articles for article (PubMed ID: 20337022)

  • 21. Comments on "Sliding mode closed-loop control of FES: controlling the shank movement".
    Ebrahimpour MM; Erfanian A
    IEEE Trans Biomed Eng; 2008 Dec; 55(12):2842-3. PubMed ID: 19126468
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A novel model of motor learning capable of developing an optimal movement control law online from scratch.
    Shimansky YP; Kang T; He J
    Biol Cybern; 2004 Feb; 90(2):133-45. PubMed ID: 14999480
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of Hammerstein models with cubic spline nonlinearities.
    Dempsey EJ; Westwick DT
    IEEE Trans Biomed Eng; 2004 Feb; 51(2):237-45. PubMed ID: 14765696
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A study on feedback error learning controller for functional electrical stimulation: generation of target trajectories by minimum jerk model.
    Watanabe T; Fukushima K
    Artif Organs; 2011 Mar; 35(3):270-4. PubMed ID: 21401673
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modeling the functional organization of the basal ganglia. A parallel distributed processing approach.
    Mitchell IJ; Brotchie JM; Brown GD; Crossman AR
    Mov Disord; 1991; 6(3):189-204. PubMed ID: 1922123
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Neural network control of functional neuromuscular stimulation systems: computer simulation studies.
    Abbas JJ; Chizeck HJ
    IEEE Trans Biomed Eng; 1995 Nov; 42(11):1117-27. PubMed ID: 7498916
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A generic model of real-world non-ideal behaviour of FES-induced muscle contractions: simulation tool.
    Lynch CL; Graham GM; Popovic MR
    J Neural Eng; 2011 Aug; 8(4):046034. PubMed ID: 21757801
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optimal coordination and control of posture and movements.
    Johansson R; Fransson PA; Magnusson M
    J Physiol Paris; 2009; 103(3-5):159-77. PubMed ID: 19671443
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Stimulation-based anticipation and control of state transitions in the epileptic brain.
    Kalitzin SN; Velis DN; da Silva FH
    Epilepsy Behav; 2010 Mar; 17(3):310-23. PubMed ID: 20163993
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A nonlinear approach to modeling of electrically stimulated skeletal muscle.
    Gollee H; Murray-Smith DJ; Jarvis JC
    IEEE Trans Biomed Eng; 2001 Apr; 48(4):406-15. PubMed ID: 11322528
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust adaptive controller design for a class of uncertain nonlinear systems using online T-S fuzzy-neural modeling approach.
    Chien YH; Wang WY; Leu YG; Lee TT
    IEEE Trans Syst Man Cybern B Cybern; 2011 Apr; 41(2):542-52. PubMed ID: 20858584
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nonlinear model identification and adaptive model predictive control using neural networks.
    Akpan VA; Hassapis GD
    ISA Trans; 2011 Apr; 50(2):177-94. PubMed ID: 21281932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Sensitivity and versatility of an adaptive system for controlling cyclic movements using functional neuromuscular stimulation.
    Stites EC; Abbas JJ
    IEEE Trans Biomed Eng; 2000 Sep; 47(9):1287-92. PubMed ID: 11008432
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modeling of human movements, neuroprostheses.
    Laczkó J
    Ideggyogy Sz; 2011 Jul; 64(7-8):229-33. PubMed ID: 21863689
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic model of the octopus arm. II. Control of reaching movements.
    Yekutieli Y; Sagiv-Zohar R; Hochner B; Flash T
    J Neurophysiol; 2005 Aug; 94(2):1459-68. PubMed ID: 15829593
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nonlinear Hammerstein model of ultrasonic motor for position control using differential evolution algorithm.
    Lu S; Jingzhuo S
    Ultrasonics; 2019 Apr; 94():20-27. PubMed ID: 30606649
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Identification of Hammerstein systems using subspace methods with applications to ankle joint stiffness.
    Zhao Y; Kearney RE
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4367-70. PubMed ID: 19964357
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nonlinear predictive control for Hammerstein-Wiener systems.
    Ławryńczuk M
    ISA Trans; 2015 Mar; 55():49-62. PubMed ID: 25451816
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Quantifying the Nonlinear Interaction in the Nervous System Based on Phase-Locked Amplitude Relationship.
    Yang Y; Yao J; Dewald JPA; van der Helm FCT; Schouten AC
    IEEE Trans Biomed Eng; 2020 Sep; 67(9):2638-2645. PubMed ID: 31976876
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nonlinear dynamics of the movement of the venus flytrap.
    Li Y; Lenaghan SC; Zhang M
    Bull Math Biol; 2012 Oct; 74(10):2446-73. PubMed ID: 22843018
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 4.