These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 20337046)

  • 1. [Design and control of a simulating cardiovascular system].
    Liu Y; Yang M; Li S; Zheng Z
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2010 Feb; 27(1):165-9. PubMed ID: 20337046
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Hemodynamics study of cardiovascular system in vitro simulation].
    Li H; Qian K
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Aug; 23(4):778-80. PubMed ID: 17002106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of an artificial heart pump performance test system.
    Liu Y; Allaire P; Wu Y; Wood H; Olsen D
    Cardiovasc Eng; 2006 Dec; 6(4):151-8. PubMed ID: 17136597
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design and control of the atrio-aortic left ventricular assist device based on O2 consumption.
    Drzewiecki GM; Pilla JJ; Welkowitz W
    IEEE Trans Biomed Eng; 1990 Feb; 37(2):128-37. PubMed ID: 2312137
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hardware-in-the-loop-simulation of the cardiovascular system, with assist device testing application.
    Hanson BM; Levesley MC; Watterson K; Walker PG
    Med Eng Phys; 2007 Apr; 29(3):367-74. PubMed ID: 16815728
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Left atrial pressure controller design for an artificial heart.
    Kitamura T
    IEEE Trans Biomed Eng; 1990 Feb; 37(2):164-9. PubMed ID: 2312141
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hemodynamic effects of partial ventricular support in chronic heart failure: results of simulation validated with in vivo data.
    Morley D; Litwak K; Ferber P; Spence P; Dowling R; Meyns B; Griffith B; Burkhoff D
    J Thorac Cardiovasc Surg; 2007 Jan; 133(1):21-8. PubMed ID: 17198776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A compact mock circulation loop for the in vitro testing of cardiovascular devices.
    Timms DL; Gregory SD; Greatrex NA; Pearcy MJ; Fraser JF; Steinseifer U
    Artif Organs; 2011 Apr; 35(4):384-91. PubMed ID: 20883450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A control system for rotary blood pumps based on suction detection.
    Ferreira A; Boston JR; Antaki JF
    IEEE Trans Biomed Eng; 2009 Mar; 56(3):656-65. PubMed ID: 19272919
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cardiovascular simulator improvement: pressure versus volume loop assessment.
    Fonseca J; Andrade A; Nicolosi DE; Biscegli JF; Leme J; Legendre D; Bock E; Lucchi JC
    Artif Organs; 2011 May; 35(5):454-8. PubMed ID: 21595711
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and evaluation of totally implantable ventricular assist system using a vibrating flow pump and transcutaneous energy transmission system with amorphous fibers.
    Yambe T; Hashimoto H; Kobayashi S; Sonobe T; Naganuma S; Nanka SS; Matsuki H; Yoshizawa M; Tabayashi K; Takayasu H; Takeda H; Nitta S
    Heart Vessels; 1997; Suppl 12():41-3. PubMed ID: 9476541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hemodynamic controller for left ventricular assist device based on pulsatility ratio.
    Choi S; Boston JR; Antaki JF
    Artif Organs; 2007 Feb; 31(2):114-25. PubMed ID: 17298400
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A bridge from short-term to long-term left ventricular assist device--experimental verification of a physiological controller.
    Wu Y; Allaire PE; Tao G; Adams M; Liu Y; Wood H; Olsen DB
    Artif Organs; 2004 Oct; 28(10):927-32. PubMed ID: 15385000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specification of supervisory control systems for ventricular assist devices.
    Cavalheiro AC; Santos Fo DJ; Andrade A; Cardoso JR; Horikawa O; Bock E; Fonseca J
    Artif Organs; 2011 May; 35(5):465-70. PubMed ID: 21595713
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adaptive physiological speed/flow control of rotary blood pumps in permanent implantation using intrinsic pump parameters.
    Wu Y
    ASAIO J; 2009; 55(4):335-9. PubMed ID: 19506462
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of implantable centrifugal pumps.
    Schwanda G; Losert U; Stöhr H; Thoma H; Wolner E
    Life Support Syst; 1983; 1 Suppl 1():25-31. PubMed ID: 6336422
    [No Abstract]   [Full Text] [Related]  

  • 17. An electric model with time varying resistance for a pneumatic membrane blood pump.
    Jin Z; Qin J
    ASAIO J; 1993; 39(1):56-61. PubMed ID: 8439682
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fully autonomous preload-sensitive control of implantable rotary blood pumps.
    Arndt A; Nüsser P; Lampe B
    Artif Organs; 2010 Sep; 34(9):726-35. PubMed ID: 20883392
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An artificial right ventricle for failing fontan: in vitro and computational study.
    Lacour-Gayet FG; Lanning CJ; Stoica S; Wang R; Rech BA; Goldberg S; Shandas R
    Ann Thorac Surg; 2009 Jul; 88(1):170-6. PubMed ID: 19559219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hemodynamic simulation of blood flow in a new type of cardiac assist device named AVICENA.
    Alizadeh M; Tehrani P; Rahmani S
    Proc Inst Mech Eng H; 2014 Aug; 228(8):824-32. PubMed ID: 25205749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.