These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 20337046)

  • 21. Development of a reliable automatic speed control system for rotary blood pumps.
    Vollkron M; Schima H; Huber L; Benkowski R; Morello G; Wieselthaler G
    J Heart Lung Transplant; 2005 Nov; 24(11):1878-85. PubMed ID: 16297795
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effect of systolic duration on mechanical heart valve cavitation in a pneumatic ventricular assist device: using a monoleaflet valve.
    Lee H; Tatsumi E; Taenaka Y
    ASAIO J; 2008; 54(1):25-30. PubMed ID: 18204312
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An electro-fluid-dynamic simulator for the cardiovascular system.
    Felipini CL; de Andrade AJ; Lucchi JC; da Fonseca JW; Nicolosi D
    Artif Organs; 2008 Apr; 32(4):349-54. PubMed ID: 18370952
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mock circulatory system for the evaluation of left ventricular assist devices, endoluminal prostheses, and vascular diseases.
    Legendre D; Fonseca J; Andrade A; Biscegli JF; Manrique R; Guerrino D; Prakasan AK; Ortiz JP; Lucchi JC
    Artif Organs; 2008 Jun; 32(6):461-7. PubMed ID: 18422796
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cardiac positioning using an apical suction device maintains beating heart hemodynamics.
    Sepic J; Wee JO; Soltesz EG; Hsin MK; Cohn LH; Laurence RG; Aklog L
    Heart Surg Forum; 2002; 5(3):279-84. PubMed ID: 12538143
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A passively controlled biventricular support device.
    Gaddum NR; Timms DL; Pearcy MJ
    Artif Organs; 2010 Jun; 34(6):473-80. PubMed ID: 20482712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new pulsatile volumetric device with biomorphic valves for the in vitro study of the cardiovascular system.
    Lanzarone E; Vismara R; Fiore GB
    Artif Organs; 2009 Dec; 33(12):1048-62. PubMed ID: 19604227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In vitro testing of a left ventricular assist device. Study of the effect of its control strategy on energetic relationships inside the left ventricle.
    Ferrari G; Gorczynska K; De Lazzari C; Grodzicki K; Mimmo R; Ambrosi D; Tosti G
    Technol Health Care; 1996 Mar; 3(4):231-9. PubMed ID: 8705398
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Left ventricle afterload impedance control by an axial flow ventricular assist device: a potential tool for ventricular recovery.
    Moscato F; Arabia M; Colacino FM; Naiyanetr P; Danieli GA; Schima H
    Artif Organs; 2010 Sep; 34(9):736-44. PubMed ID: 20636446
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of Eulerian and Lagrangian models for hemolysis estimation.
    Taskin ME; Fraser KH; Zhang T; Wu C; Griffith BP; Wu ZJ
    ASAIO J; 2012; 58(4):363-72. PubMed ID: 22635012
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Physiological control of a rotary blood pump with selectable therapeutic options: control of pulsatility gradient.
    Arndt A; Nüsser P; Graichen K; Müller J; Lampe B
    Artif Organs; 2008 Oct; 32(10):761-71. PubMed ID: 18959664
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Synthesis and evaluation of the adaptive control system for the ventricular assist device by using the circulatory system simulator].
    Feng JS; Yoshizawa M; Takeda H; Miura M; Yanbe T; Katahira Y; Nitta S
    Iyodenshi To Seitai Kogaku; 1989 Mar; 27(1):8-18. PubMed ID: 2754864
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Physiological control of blood pumps using intrinsic pump parameters: a computer simulation study.
    Giridharan GA; Skliar M
    Artif Organs; 2006 Apr; 30(4):301-7. PubMed ID: 16643388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A model-free adaptive control to a blood pump based on heart rate.
    Chang Y; Gao B; Gu K
    ASAIO J; 2011; 57(4):262-7. PubMed ID: 21502862
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A computer model of the pediatric circulatory system for testing pediatric assist devices.
    Giridharan GA; Koenig SC; Mitchell M; Gartner M; Pantalos GM
    ASAIO J; 2007; 53(1):74-81. PubMed ID: 17237652
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fuzzy logic automatic control of the Phoenix-7 total artificial heart.
    Hsu CH
    J Artif Organs; 2004; 7(2):69-76. PubMed ID: 15309673
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of a pulsatile pediatric ventricular assist device in an acute right heart failure model.
    Shum-Tim D; Duncan BW; Hraska V; Friehs I; Shin'oka T; Jonas RA
    Ann Thorac Surg; 1997 Nov; 64(5):1374-80. PubMed ID: 9386707
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Staged cardiac transplantation. Total artificial heart or ventricular-assist pump?
    Pae WE; Pierce WS; Myers JL; Wisman CB; Campbell DB; Waldhausen JA
    Circulation; 1988 Nov; 78(5 Pt 2):III66-72. PubMed ID: 3052919
    [TBL] [Abstract][Full Text] [Related]  

  • 39. First clinical experience with an automatic control system for rotary blood pumps during ergometry and right-heart catheterization.
    Schima H; Vollkron M; Jantsch U; Crevenna R; Roethy W; Benkowski R; Morello G; Quittan M; Hiesmayr M; Wieselthaler G
    J Heart Lung Transplant; 2006 Feb; 25(2):167-73. PubMed ID: 16446216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optimal pressure regulation of the pneumatic ventricular assist device with bellows-type driver.
    Lee JJ; Kim BS; Choi J; Choi H; Ahn CB; Nam KW; Jeong GS; Lim CH; Son HS; Sun K
    Artif Organs; 2009 Aug; 33(8):627-33. PubMed ID: 19624587
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.