These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 20337430)

  • 21. Application of a sensor system for determining the kind and quantity of two component VOC mixtures in air after the use of solvents.
    Szczurek A; Maciejewska M; Flisowska-Wiercik B; Bodzoj L
    J Environ Monit; 2009 Nov; 11(11):1942-51. PubMed ID: 19890551
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Development of a simple cataluminescence sensor system for detecting and discriminating volatile organic compounds at different concentrations.
    Zhang R; Cao X; Liu Y; Chang X
    Anal Chem; 2013 Apr; 85(8):3802-6. PubMed ID: 23485018
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dissolution kinetics of volatile organic compound vapors in water: An integrated experimental and computational study.
    Mahmoodlu MG; Pontedeiro EM; Pérez Guerrero JS; Raoof A; Majid Hassanizadeh S; van Genuchten MT
    J Contam Hydrol; 2017 Jan; 196():43-51. PubMed ID: 27993467
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Breath analysis by optical fiber sensor for the determination of exhaled organic compounds with a view to diagnostics.
    Silva LI; Freitas AC; Rocha-Santos TA; Pereira ME; Duarte AC
    Talanta; 2011 Feb; 83(5):1586-94. PubMed ID: 21238756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Determination of volatile organic compounds in contaminated air using semipermeable membrane devices.
    Ly-Verdú S; Esteve-Turrillas FA; Pastor A; de la Guardia M
    Talanta; 2010 Mar; 80(5):2041-8. PubMed ID: 20152450
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A comparative study between different alternatives to prepare gaseous standards for calibrating UV-Ion Mobility Spectrometers.
    Criado-García L; Garrido-Delgado R; Arce L; Valcárcel M
    Talanta; 2013 Jul; 111():111-8. PubMed ID: 23622533
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Treatment of VOCs with molecular sieve catalysts in regenerative catalytic oxidizer.
    Huang SW; Lou JC; Lin YC
    J Hazard Mater; 2010 Nov; 183(1-3):641-7. PubMed ID: 20692765
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabry-Pérot cavity sensor-based optofluidic gas chromatography using a microfabricated passive preconcentrator/injector.
    Seo JH; Liu J; Fan X; Kurabayashi K
    Lab Chip; 2013 Mar; 13(5):851-9. PubMed ID: 23295709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multianalyte chemical identification and quantitation using a single radio frequency identification sensor.
    Potyrailo RA; Morris WG
    Anal Chem; 2007 Jan; 79(1):45-51. PubMed ID: 17194120
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of solid-phase microextraction followed by gas chromatography-mass spectrometry for rapid analysis of volatile organic chemicals in mainstream cigarette smoke.
    Ye Q
    J Chromatogr A; 2008 Dec; 1213(2):239-44. PubMed ID: 18992893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Volatile organic compounds at an urban monitoring station in Korea.
    Nguyen HT; Kim KH; Kim MY
    J Hazard Mater; 2009 Jan; 161(1):163-74. PubMed ID: 18436374
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Development of a portable instrument for the continuous analysis of volatile organic compounds (VOCs) and its application to environmental monitoring.
    Yamada E; Matsushita K; Nakamura M; Fuse Y; Miki S; Fujimoto K; Morita H; Shimada O
    Environ Sci; 2006; 13(5):277-87. PubMed ID: 17096002
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Field comparison of passive air samplers with reference monitors for ambient volatile organic compounds and nitrogen dioxide under week-long integrals.
    Mukerjee S; Oliver KD; Seila RL; Jacumin HH; Croghan C; Daughtrey EH; Neas LM; Smith LA
    J Environ Monit; 2009 Jan; 11(1):220-7. PubMed ID: 19137161
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Insights into 'fermentonomics': evaluation of volatile organic compounds (VOCs) in human disease using an electronic 'e-nose'.
    Arasaradnam RP; Quraishi N; Kyrou I; Nwokolo CU; Joseph M; Kumar S; Bardhan KD; Covington JA
    J Med Eng Technol; 2011 Feb; 35(2):87-91. PubMed ID: 21204611
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Volatile organic compounds sensing properties of tetrakis(alkylthio)-substituted lutetium(III) bisphthalocyanines thin films.
    Kilinç N; Atilla D; Gürek AG; Oztürk ZZ; Ahsen V
    Talanta; 2009 Nov; 80(1):263-8. PubMed ID: 19782225
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ionic liquid ethanol sensor.
    Lee YG; Chou TC
    Biosens Bioelectron; 2004 Jul; 20(1):33-40. PubMed ID: 15142574
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced sensing of nonpolar volatile organic compounds by silicon nanowire field effect transistors.
    Paska Y; Stelzner T; Christiansen S; Haick H
    ACS Nano; 2011 Jul; 5(7):5620-6. PubMed ID: 21648442
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mesoporous silicate MCM-48 as an enrichment medium for ambient volatile organic compound analysis.
    Su YC; Kao HM; Wang JL
    J Chromatogr A; 2010 Sep; 1217(36):5643-51. PubMed ID: 20674927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Barbecue charcoal combustion as a potential source of aromatic volatile organic compounds and carbonyls.
    Kabir E; Kim KH; Ahn JW; Hong OF; Sohn JR
    J Hazard Mater; 2010 Feb; 174(1-3):492-9. PubMed ID: 19819620
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chemiresistive sensing of volatile organic compounds with films of surfactant-stabilized gold and gold-silver alloy nanoparticles.
    Ibañez FJ; Zamborini FP
    ACS Nano; 2008 Aug; 2(8):1543-52. PubMed ID: 19206357
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.