BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20337472)

  • 21. Association of Hg2+ with aqueous (C60)n aggregates facilitates increased bioavailability of Hg2+ in Zebrafish (Danio rerio).
    Henry TB; Wileman SJ; Boran H; Sutton P
    Environ Sci Technol; 2013 Sep; 47(17):9997-10004. PubMed ID: 23941233
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Transport and retention of fullerene nanoparticles in natural soils.
    Wang Y; Li Y; Kim H; Walker SL; Abriola LM; Pennell KD
    J Environ Qual; 2010; 39(6):1925-33. PubMed ID: 21284289
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Uncontrolled variability in the extinction spectra of C60 nanoparticle suspensions.
    Chang X; Vikesland PJ
    Langmuir; 2013 Aug; 29(31):9685-93. PubMed ID: 23800184
    [TBL] [Abstract][Full Text] [Related]  

  • 24. How redox conditions and irradiation affect sorption of PAHs by dispersed fullerenes (nC60).
    Hüffer T; Kah M; Hofmann T; Schmidt TC
    Environ Sci Technol; 2013 Jul; 47(13):6935-42. PubMed ID: 23234332
    [TBL] [Abstract][Full Text] [Related]  

  • 25. UV irradiation and humic acid mediate aggregation of aqueous fullerene (nC₆₀) nanoparticles.
    Qu X; Hwang YS; Alvarez PJ; Bouchard D; Li Q
    Environ Sci Technol; 2010 Oct; 44(20):7821-6. PubMed ID: 20866048
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ground State Reactions of nC60 with Free Chlorine in Water.
    Wu J; Benoit D; Lee SS; Li W; Fortner JD
    Environ Sci Technol; 2016 Jan; 50(2):721-31. PubMed ID: 26651395
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Characterizing reactive oxygen generation and bacterial inactivation by a zerovalent iron-fullerene nano-composite device at neutral pH under UV-A illumination.
    Erdim E; Badireddy AR; Wiesner MR
    J Hazard Mater; 2015; 283():80-8. PubMed ID: 25262481
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of stable aqueous fullerene nanocrystal (nC60) on Daphnia magna: evaluation of hop frequency and accumulations under different conditions.
    Tao X; He Y; Zhang B; Chen Y; Hughes JB
    J Environ Sci (China); 2011; 23(2):322-9. PubMed ID: 21517008
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Differential photoactivity of aqueous [C60] and [C70] fullerene aggregates.
    Moor KJ; Snow SD; Kim JH
    Environ Sci Technol; 2015 May; 49(10):5990-8. PubMed ID: 25950275
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effects of dilution on the properties of nC₆₀.
    Chang X; Vikesland PJ
    Environ Pollut; 2013 Oct; 181():51-9. PubMed ID: 23811179
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Spectroscopic and kinetic studies of photochemical reaction of magnesium tetraphenylporphyrin with oxygen.
    Zhang J; Zhang P; Zhang Z; Wei X
    J Phys Chem A; 2009 May; 113(18):5367-74. PubMed ID: 19358552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of electrolyte species and concentration on the aggregation and transport of fullerene nanoparticles in quartz sands.
    Wang Y; Li Y; Pennell KD
    Environ Toxicol Chem; 2008 Sep; 27(9):1860-7. PubMed ID: 19086205
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Removal of aqueous nC60 fullerene from water by low pressure membrane filtration.
    Floris R; Nijmeijer K; Cornelissen ER
    Water Res; 2016 Mar; 91():115-25. PubMed ID: 26773485
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Detachment of fullerene nC60 nanoparticles in saturated porous media under flow/stop-flow conditions: Column experiments and mechanistic explanations.
    Wang Z; Wang D; Li B; Wang J; Li T; Zhang M; Huang Y; Shen C
    Environ Pollut; 2016 Jun; 213():698-709. PubMed ID: 27023279
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quenching and sensitizing fullerene photoreactions by natural organic matter.
    Kong L; Mukherjee B; Chan YF; Zepp RG
    Environ Sci Technol; 2013 Jun; 47(12):6189-96. PubMed ID: 23662979
    [TBL] [Abstract][Full Text] [Related]  

  • 36. C60 colloid formation in aqueous systems: effects of preparation method on size, structure, and surface charge.
    Duncan LK; Jinschek JR; Vikesland PJ
    Environ Sci Technol; 2008 Jan; 42(1):173-8. PubMed ID: 18350893
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of fullerene nanomaterials between water and model biological membranes.
    Hou WC; Moghadam BY; Westerhoff P; Posner JD
    Langmuir; 2011 Oct; 27(19):11899-905. PubMed ID: 21854052
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantifying summed fullerene nC60 and related transformation products in water using LC LTQ Orbitrap MS and application to environmental samples.
    van Wezel AP; Morinière V; Emke E; ter Laak T; Hogenboom AC
    Environ Int; 2011 Aug; 37(6):1063-7. PubMed ID: 21529946
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Generation and properties of aqu/nC
    Li X; Ding G; Zhang J; Wang Y; Li W; Wang C; Li R; Yang Z
    Environ Sci Pollut Res Int; 2020 Apr; 27(11):12527-12538. PubMed ID: 32002835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photochemistry of aqueous C₆₀ clusters: wavelength dependency and product characterization.
    Hou WC; Kong L; Wepasnick KA; Zepp RG; Fairbrother DH; Jafvert CT
    Environ Sci Technol; 2010 Nov; 44(21):8121-7. PubMed ID: 20939530
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.