BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 20337472)

  • 41. Transport and retention of fullerene (nC60) nanoparticles in unsaturated porous media: effects of solution chemistry and solid phase coating.
    Chen L; Sabatini DA; Kibbey TC
    J Contam Hydrol; 2012 Sep; 138-139():104-12. PubMed ID: 22858671
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Water disinfection processes change the cytotoxicity of C
    Zhang Q; Wang M; Gu C; Zhang C
    Water Res; 2019 Oct; 163():114867. PubMed ID: 31330401
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Adsorption of C60 buckminster fullerenes on an 11-amino-1-undecene-covered Si(111) substrate.
    Zhang X; Teplyakov AV
    Langmuir; 2008 Feb; 24(3):810-20. PubMed ID: 18085804
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Reduction of hydroxylated fullerene (fullerol) in water by zinc: reaction and hemiketal product characterization.
    Wu J; Alemany LB; Li W; Petrie L; Welker C; Fortner JD
    Environ Sci Technol; 2014 Jul; 48(13):7384-92. PubMed ID: 24892381
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of subcellular distribution on nC₆₀ uptake and transfer efficiency from Scenedesmus obliquus to Daphnia magna.
    Chen Q; Hu X; Yin D; Wang R
    Ecotoxicol Environ Saf; 2016 Jun; 128():213-21. PubMed ID: 26946286
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Photochemical reduction and reoxidation of aqueous mercuric chloride in the presence of ferrioxalate and air.
    Ababneh FA; Scott SL; Al-Reasi HA; Lean DR
    Sci Total Environ; 2006 Aug; 367(2-3):831-9. PubMed ID: 16690102
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of dispersion on adsorption of atrazine by aqueous suspensions of fullerenes.
    Gai K; Shi B; Yan X; Wang D
    Environ Sci Technol; 2011 Jul; 45(14):5959-65. PubMed ID: 21692500
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Effects of carboxylic acids on nC60 aggregate formation.
    Chang X; Vikesland PJ
    Environ Pollut; 2009 Apr; 157(4):1072-80. PubMed ID: 19054600
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Mechanisms of nC60 removal by the alum coagulation-flocculation-sedimentation process.
    Wang C; Shang C; Chen G; Zhu X
    J Colloid Interface Sci; 2013 Dec; 411():213-9. PubMed ID: 24055251
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanomaterials as possible contaminants: the fullerene example.
    Wiesner MR; Hotze EM; Brant JA; Espinasse B
    Water Sci Technol; 2008; 57(3):305-10. PubMed ID: 18309205
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Enhanced transport of 2,2',5,5'-polychlorinated biphenyl by natural organic matter (NOM) and surfactant-modified fullerene nanoparticles (nC60).
    Wang L; Huang Y; Kan AT; Tomson MB; Chen W
    Environ Sci Technol; 2012 May; 46(10):5422-9. PubMed ID: 22500825
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Comparative photoactivity and antibacterial properties of C60 fullerenes and titanium dioxide nanoparticles.
    Brunet L; Lyon DY; Hotze EM; Alvarez PJ; Wiesner MR
    Environ Sci Technol; 2009 Jun; 43(12):4355-60. PubMed ID: 19603646
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Electrochemical nanostructuring of fullerene films--spectroscopic evidence for C60 polymer formation and hydrogenation.
    Krause M; Deutsch D; Janda P; Kavan L; Dunsch L
    Phys Chem Chem Phys; 2005 Sep; 7(17):3179-84. PubMed ID: 16240029
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Cotransport of titanium dioxide and fullerene nanoparticles in saturated porous media.
    Cai L; Tong M; Ma H; Kim H
    Environ Sci Technol; 2013 Jun; 47(11):5703-10. PubMed ID: 23662648
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Effect of soil sorption and aquatic natural organic matter on the antibacterial activity of a fullerene water suspension.
    Li D; Lyon DY; Li Q; Alvarez PJ
    Environ Toxicol Chem; 2008 Sep; 27(9):1888-94. PubMed ID: 19086207
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A salt-free zero-charged aqueous onion-phase enhances the solubility of fullerene C60 in water.
    Li H; Jia X; Li Y; Shi X; Hao J
    J Phys Chem B; 2006 Jan; 110(1):68-74. PubMed ID: 16471501
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transport and retention of nanoscale C60 aggregates in water-saturated porous media.
    Wang Y; Li Y; Fortner JD; Hughes JB; Abriola LM; Pennell KD
    Environ Sci Technol; 2008 May; 42(10):3588-94. PubMed ID: 18546694
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Quantification of C60 fullerene concentrations in water.
    Chen Z; Westerhoff P; Herckes P
    Environ Toxicol Chem; 2008 Sep; 27(9):1852-9. PubMed ID: 19086313
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Mechanistic aspects regarding the direct aqueous environmental photochemistry of phenol and its simple halogenated derivatives. A review.
    Rayne S; Forest K; Friesen KJ
    Environ Int; 2009 Feb; 35(2):425-37. PubMed ID: 18930546
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Translocation of C(60) from aqueous stable colloidal aggregates into surfactant micelles.
    Zhang B; Cho M; Hughes JB; Kim JH
    Environ Sci Technol; 2009 Dec; 43(24):9124-9. PubMed ID: 19928758
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.