These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 20337528)

  • 1. Avoidance of skeletal muscle atrophy in spontaneous and facultative hibernators.
    Cotton CJ; Harlow HJ
    Physiol Biochem Zool; 2010; 83(3):551-60. PubMed ID: 20337528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extreme plasticity in thermoregulatory behaviors of free-ranging black-tailed prairie dogs.
    Lehmer EM; Savage LT; Antolin MF; Biggins DE
    Physiol Biochem Zool; 2006; 79(3):454-67. PubMed ID: 16691512
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of dietary fatty acids in the evolution of spontaneous and facultative hibernation patterns in prairie dogs.
    Harlow HJ; Frank CL
    J Comp Physiol B; 2001 Feb; 171(1):77-84. PubMed ID: 11263729
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maintenance of slow type I myosin protein and mRNA expression in overwintering prairie dogs (Cynomys leucurus and ludovicianus) and black bears (Ursus americanus).
    Rourke BC; Cotton CJ; Harlow HJ; Caiozzo VJ
    J Comp Physiol B; 2006 Sep; 176(7):709-20. PubMed ID: 16758215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Daily torpor reduces mass and changes stress and power output of soleus and EDL muscles in the Djungarian hamster, Phodopus sungorus.
    James RS; Tallis JA; Seebacher F; Storey K
    J Exp Biol; 2011 Sep; 214(Pt 17):2896-902. PubMed ID: 21832132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of hibernation on the contractile and biochemical properties of skeletal muscles in the thirteen-lined ground squirrel, Ictidomys tridecemlineatus.
    James RS; Staples JF; Brown JC; Tessier SN; Storey KB
    J Exp Biol; 2013 Jul; 216(Pt 14):2587-94. PubMed ID: 23531815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prioritization of skeletal muscle growth for emergence from hibernation.
    Hindle AG; Otis JP; Epperson LE; Hornberger TA; Goodman CA; Carey HV; Martin SL
    J Exp Biol; 2015 Jan; 218(Pt 2):276-84. PubMed ID: 25452506
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Skeletal muscle is protected from disuse in hibernating dauria ground squirrels.
    Gao YF; Wang J; Wang HP; Feng B; Dang K; Wang Q; Hinghofer-Szalkay HG
    Comp Biochem Physiol A Mol Integr Physiol; 2012 Mar; 161(3):296-300. PubMed ID: 22133905
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Minimal seasonal alterations in the skeletal muscle of captive brown bears.
    Hershey JD; Robbins CT; Nelson OL; Lin DC
    Physiol Biochem Zool; 2008; 81(2):138-47. PubMed ID: 18173360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Regulation of ground squirrel Na+K+-ATPase activity by reversible phosphorylation during hibernation.
    MacDonald JA; Storey KB
    Biochem Biophys Res Commun; 1999 Jan; 254(2):424-9. PubMed ID: 9918854
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in calpains and calpastatin in the soleus muscle of Daurian ground squirrels during hibernation.
    Yang CX; He Y; Gao YF; Wang HP; Goswami N
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Oct; 176():26-31. PubMed ID: 24937257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hibernating black bears (Ursus americanus) experience skeletal muscle protein balance during winter anorexia.
    Lohuis TD; Harlow HJ; Beck TD
    Comp Biochem Physiol B Biochem Mol Biol; 2007 May; 147(1):20-8. PubMed ID: 17307375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hibernating bears conserve muscle strength and maintain fatigue resistance.
    Lohuis TD; Harlow HJ; Beck TD; Iaizzo PA
    Physiol Biochem Zool; 2007; 80(3):257-69. PubMed ID: 17390282
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantitative analysis of liver metabolites in three stages of the circannual hibernation cycle in 13-lined ground squirrels by NMR.
    Serkova NJ; Rose JC; Epperson LE; Carey HV; Martin SL
    Physiol Genomics; 2007 Sep; 31(1):15-24. PubMed ID: 17536023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymes of adenylate metabolism and their role in hibernation of the white-tailed prairie dog, Cynomys leucurus.
    English TE; Storey KB
    Arch Biochem Biophys; 2000 Apr; 376(1):91-100. PubMed ID: 10729194
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antiproteolytic effects of plasma from hibernating bears: a new approach for muscle wasting therapy?
    Fuster G; Busquets S; Almendro V; López-Soriano FJ; Argilés JM
    Clin Nutr; 2007 Oct; 26(5):658-61. PubMed ID: 17904252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic changes in global and gene-specific DNA methylation during hibernation in adult thirteen-lined ground squirrels, Ictidomys tridecemlineatus.
    Alvarado S; Mak T; Liu S; Storey KB; Szyf M
    J Exp Biol; 2015 Jun; 218(Pt 11):1787-95. PubMed ID: 25908059
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Skeletal muscle mass and composition during mammalian hibernation.
    Cotton CJ
    J Exp Biol; 2016 Jan; 219(Pt 2):226-34. PubMed ID: 26792334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Annual lipid cycles in hibernators: integration of physiology and behavior.
    Dark J
    Annu Rev Nutr; 2005; 25():469-97. PubMed ID: 16011475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle strength in overwintering bears.
    Harlow HJ; Lohuis T; Beck TD; Iaizzo PA
    Nature; 2001 Feb; 409(6823):997. PubMed ID: 11234052
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.