These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
428 related articles for article (PubMed ID: 20338093)
1. The effect of hybridization of hydrogels and poly(L-lactide-co-epsilon-caprolactone) scaffolds on cartilage tissue engineering. Jung Y; Kim SH; Kim YH; Kim SH J Biomater Sci Polym Ed; 2010; 21(5):581-92. PubMed ID: 20338093 [TBL] [Abstract][Full Text] [Related]
2. The effects of dynamic and three-dimensional environments on chondrogenic differentiation of bone marrow stromal cells. Jung Y; Kim SH; Kim YH; Kim SH Biomed Mater; 2009 Oct; 4(5):055009. PubMed ID: 19779251 [TBL] [Abstract][Full Text] [Related]
3. Application of an elastic biodegradable poly(L-lactide-co-epsilon-caprolactone) scaffold for cartilage tissue regeneration. Jung Y; Kim SH; You HJ; Kim SH; Kim YH; Min BG J Biomater Sci Polym Ed; 2008; 19(8):1073-85. PubMed ID: 18644232 [TBL] [Abstract][Full Text] [Related]
4. Cartilage regeneration with highly-elastic three-dimensional scaffolds prepared from biodegradable poly(L-lactide-co-epsilon-caprolactone). Jung Y; Park MS; Lee JW; Kim YH; Kim SH; Kim SH Biomaterials; 2008 Dec; 29(35):4630-6. PubMed ID: 18804279 [TBL] [Abstract][Full Text] [Related]
5. Cartilaginous tissue formation using a mechano-active scaffold and dynamic compressive stimulation. Jung Y; Kim SH; Kim SH; Kim YH; Xie J; Matsuda T; Min BG J Biomater Sci Polym Ed; 2008; 19(1):61-74. PubMed ID: 18177554 [TBL] [Abstract][Full Text] [Related]
6. A biocompatible tissue scaffold produced by supercritical fluid processing for cartilage tissue engineering. Kim SH; Jung Y; Kim SH Tissue Eng Part C Methods; 2013 Mar; 19(3):181-8. PubMed ID: 22834918 [TBL] [Abstract][Full Text] [Related]
7. Enhanced Cartilaginous Tissue Formation with a Cell Aggregate-Fibrin-Polymer Scaffold Complex. Lee S; Lee K; Kim SH; Jung Y Polymers (Basel); 2017 Aug; 9(8):. PubMed ID: 30971025 [TBL] [Abstract][Full Text] [Related]
8. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering. Kim SH; Kim SH; Jung Y J Control Release; 2015 May; 206():101-7. PubMed ID: 25804870 [TBL] [Abstract][Full Text] [Related]
9. A viscoelastic chitosan-modified three-dimensional porous poly(L-lactide-co-ε-caprolactone) scaffold for cartilage tissue engineering. Li C; Wang L; Yang Z; Kim G; Chen H; Ge Z J Biomater Sci Polym Ed; 2012; 23(1-4):405-24. PubMed ID: 21310105 [TBL] [Abstract][Full Text] [Related]
10. Poly (l-lactide-co-caprolactone) scaffolds enhanced with poly (β-hydroxybutyrate-co-β-hydroxyvalerate) microspheres for cartilage regeneration. Li C; Zhang J; Li Y; Moran S; Khang G; Ge Z Biomed Mater; 2013 Apr; 8(2):025005. PubMed ID: 23385654 [TBL] [Abstract][Full Text] [Related]
11. Tissue-engineered cartilage constructs using composite hyaluronic acid/collagen I hydrogels and designed poly(propylene fumarate) scaffolds. Liao E; Yaszemski M; Krebsbach P; Hollister S Tissue Eng; 2007 Mar; 13(3):537-50. PubMed ID: 17319795 [TBL] [Abstract][Full Text] [Related]
12. Electrospun collagen-poly(L-lactic acid-co-ε-caprolactone) membranes for cartilage tissue engineering. He X; Fu W; Feng B; Wang H; Liu Z; Yin M; Wang W; Zheng J Regen Med; 2013 Jul; 8(4):425-36. PubMed ID: 23826697 [TBL] [Abstract][Full Text] [Related]
13. Hybrid hyaluronic acid hydrogel/poly(ɛ-caprolactone) scaffold provides mechanically favorable platform for cartilage tissue engineering studies. Mintz BR; Cooper JA J Biomed Mater Res A; 2014 Sep; 102(9):2918-26. PubMed ID: 24115629 [TBL] [Abstract][Full Text] [Related]
14. [Experimental study on tissue engineered cartilage complex three-dimensional nano-scaffold with collagen type II and hyaluronic acid in vitro]. Yang Z; Chen Z; Liu K; Bai Y; Jiang T; Feng D; Feng G Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2013 Oct; 27(10):1240-5. PubMed ID: 24397139 [TBL] [Abstract][Full Text] [Related]
15. Comparison of different chondrocytes for use in tissue engineering of cartilage model structures. Isogai N; Kusuhara H; Ikada Y; Ohtani H; Jacquet R; Hillyer J; Lowder E; Landis WJ Tissue Eng; 2006 Apr; 12(4):691-703. PubMed ID: 16674284 [TBL] [Abstract][Full Text] [Related]
16. Morphology of elastic poly(L-lactide-co-epsilon-caprolactone) copolymers and in vitro and in vivo degradation behavior of their scaffolds. Jeong SI; Kim BS; Lee YM; Ihn KJ; Kim SH; Kim YH Biomacromolecules; 2004; 5(4):1303-9. PubMed ID: 15244444 [TBL] [Abstract][Full Text] [Related]
17. In situ chondrogenic differentiation of bone marrow stromal cells in bioactive self-assembled peptide gels. Kim JE; Kim SH; Jung Y J Biosci Bioeng; 2015 Jul; 120(1):91-8. PubMed ID: 25540912 [TBL] [Abstract][Full Text] [Related]
18. The effect of scaffold pore size in cartilage tissue engineering. Nava MM; Draghi L; Giordano C; Pietrabissa R J Appl Biomater Funct Mater; 2016 Jul; 14(3):e223-9. PubMed ID: 27444061 [TBL] [Abstract][Full Text] [Related]
19. The use of fibrin and poly(lactic-co-glycolic acid) hybrid scaffold for articular cartilage tissue engineering: an in vivo analysis. Munirah S; Kim SH; Ruszymah BH; Khang G Eur Cell Mater; 2008 Feb; 15():41-52. PubMed ID: 18288632 [TBL] [Abstract][Full Text] [Related]
20. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering. Tang C; Xu Y; Jin C; Min BH; Li Z; Pei X; Wang L Artif Organs; 2013 Dec; 37(12):E179-90. PubMed ID: 24251792 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]