BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 20338100)

  • 1. Interaction between a self-assembling peptide and hydrophobic compounds.
    Tang F; Zhao X
    J Biomater Sci Polym Ed; 2010; 21(5):677-90. PubMed ID: 20338100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Formation of colloidal suspension of hydrophobic compounds with an amphiphilic self-assembling peptide.
    Fung SY; Yang H; Chen P
    Colloids Surf B Biointerfaces; 2007 Apr; 55(2):200-11. PubMed ID: 17234393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence studies on a designed self-assembling peptide of RAD16-II as a potential carrier for hydrophobic drug.
    Li F; Wang J; Tang F; Lin J; Zhang Y; Zhang EY; Wei C; Shi YK; Zhao X
    J Nanosci Nanotechnol; 2009 Feb; 9(2):1611-4. PubMed ID: 19441582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Study on the designed self-assembling peptide as potential drug carrier by fluorescence spectra].
    Lin J; Zhou QH; Zhao XJ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Oct; 29(10):2792-7. PubMed ID: 20038062
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Self-assembling surfactant-like peptide A6K as potential delivery system for hydrophobic drugs.
    Chen Y; Tang C; Zhang J; Gong M; Su B; Qiu F
    Int J Nanomedicine; 2015; 10():847-58. PubMed ID: 25670898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-assembling peptide as a potential carrier of hydrophobic compounds.
    Keyes C; Duhamel J; Fung SY; Bezaire J; Chen P
    J Am Chem Soc; 2004 Jun; 126(24):7522-32. PubMed ID: 15198599
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-dependent fluorescence property of multi-walled carbon nanotubes noncovalently functionalized by pyrene-derivatized polymer.
    Gao Y; Shi M; Zhou R; Xue C; Wang M; Chen H
    Nanotechnology; 2009 Apr; 20(13):135705. PubMed ID: 19420514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self assembly of a model amphiphilic phenylalanine peptide/polyethylene glycol block copolymer in aqueous solution.
    Castelletto V; Hamley IW
    Biophys Chem; 2009 May; 141(2-3):169-74. PubMed ID: 19232813
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrene-containing peptide-based fluorescent organogels: inclusion of graphene into the organogel.
    Adhikari B; Nanda J; Banerjee A
    Chemistry; 2011 Oct; 17(41):11488-96. PubMed ID: 21953927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solubilization of hydrophobic molecules in nanoparticles formed by polymer-surfactant interactions.
    Nizri G; Magdassi S
    J Colloid Interface Sci; 2005 Nov; 291(1):169-74. PubMed ID: 15975588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Insight into the environment of tryptophan in a hydrophobic model peptide upon aggregation and interaction with lipid vesicles: a steady state and time resolved fluorescence study.
    Joseph M; Nagaraj R
    Indian J Biochem Biophys; 1998 Apr; 35(2):67-75. PubMed ID: 9753864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrene-stacked nanostructures constructed in the recombinant tobacco mosaic virus rod scaffold.
    Endo M; Wang H; Fujitsuka M; Majima T
    Chemistry; 2006 May; 12(14):3735-40. PubMed ID: 16506261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new pyrene-based fluorescent probe for the determination of critical micelle concentrations.
    Mohr A; Talbiersky P; Korth HG; Sustmann R; Boese R; Bläser D; Rehage H
    J Phys Chem B; 2007 Nov; 111(45):12985-92. PubMed ID: 17958349
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interactions of new synthesized fluorescent cationic amphiphiles bearing pyrene hydrophobe with plasmid DNA: binding affinities, aggregation and intracellular uptake.
    Sheng R; Luo T; Zhu Y; Li H; Cao A
    Macromol Biosci; 2010 Aug; 10(8):974-82. PubMed ID: 20552606
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pyrene fluorescence analysis offers new insights into the conformation of the lipoprotein-binding domain of human apolipoprotein E.
    Patel AB; Khumsupan P; Narayanaswami V
    Biochemistry; 2010 Mar; 49(8):1766-75. PubMed ID: 20073510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lysozyme effect on structural state of model membranes as revealed by pyrene excimerization studies.
    Ioffe V; Gorbenko GP
    Biophys Chem; 2005 Apr; 114(2-3):199-204. PubMed ID: 15829353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of amino acid sequence and pH on nanofiber formation of self-assembling peptides EAK16-II and EAK16-IV.
    Hong Y; Legge RL; Zhang S; Chen P
    Biomacromolecules; 2003; 4(5):1433-42. PubMed ID: 12959616
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Release of hydrophobic anticancer drug from a newly designed self-assembling peptide.
    Wu M; Ye Z; Liu Y; Liu B; Zhao X
    Mol Biosyst; 2011 Jun; 7(6):2040-7. PubMed ID: 21491031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphological behavior of acidic and neutral liposomes induced by basic amphiphilic alpha-helical peptides with systematically varied hydrophobic-hydrophilic balance.
    Kitamura A; Kiyota T; Tomohiro M; Umeda A; Lee S; Inoue T; Sugihara G
    Biophys J; 1999 Mar; 76(3):1457-68. PubMed ID: 10049327
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fluorescent film sensors based on SAMs of pyrene derivatives for detecting nitroaromatics in aqueous solutions.
    Zhang S; Ding L; Lü F; Liu T; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Nov; 97():31-7. PubMed ID: 22750335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.