BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 20338226)

  • 1. Regulation of early spontaneous network activity and GABAergic neurons development by thyroid hormone.
    Westerholz S; de Lima AD; Voigt T
    Neuroscience; 2010 Jun; 168(2):573-89. PubMed ID: 20338226
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Irreversible loss of a subpopulation of cortical interneurons in the absence of glutamatergic network activity.
    de Lima AD; Opitz T; Voigt T
    Eur J Neurosci; 2004 Jun; 19(11):2931-43. PubMed ID: 15182300
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between GABAergic interneurons migration and early neocortical network activity.
    de Lima AD; Gieseler A; Voigt T
    Dev Neurobiol; 2009 Feb 1-15; 69(2-3):105-23. PubMed ID: 19086030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Developmental downregulation of GABAergic drive parallels formation of functional synapses in cultured mouse neocortical networks.
    Klueva J; Meis S; de Lima AD; Voigt T; Munsch T
    Dev Neurobiol; 2008 Jun; 68(7):934-49. PubMed ID: 18361402
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Earliest spontaneous activity differentially regulates neocortical GABAergic interneuron subpopulations.
    de Lima AD; Lima BD; Voigt T
    Eur J Neurosci; 2007 Jan; 25(1):1-16. PubMed ID: 17241262
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Alcohol is a potent stimulant of immature neuronal networks: implications for fetal alcohol spectrum disorder.
    Galindo R; Zamudio PA; Valenzuela CF
    J Neurochem; 2005 Sep; 94(6):1500-11. PubMed ID: 16000153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Age-dependent spontaneous hyperexcitability and impairment of GABAergic function in the hippocampus of mice lacking trkB.
    Carmona MA; Pozas E; Martínez A; Espinosa-Parrilla JF; Soriano E; Aguado F
    Cereb Cortex; 2006 Jan; 16(1):47-63. PubMed ID: 15829735
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use-dependent shift from inhibitory to excitatory GABAA receptor action in SP-O interneurons in the rat hippocampal CA3 area.
    Lamsa K; Taira T
    J Neurophysiol; 2003 Sep; 90(3):1983-95. PubMed ID: 12750426
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Developmental changes of GABAergic synapses formed between primary cultured cortical neurons.
    Kato-Negishi M; Muramoto K; Kawahara M; Kuroda Y; Ichikawa M
    Brain Res Dev Brain Res; 2004 Sep; 152(2):99-108. PubMed ID: 15351497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous network activity in the embryonic spinal cord regulates AMPAergic and GABAergic synaptic strength.
    Gonzalez-Islas C; Wenner P
    Neuron; 2006 Feb; 49(4):563-75. PubMed ID: 16476665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Depression of glutamatergic and GABAergic synaptic responses in striatal spiny neurons by stimulation of presynaptic GABAB receptors.
    Nisenbaum ES; Berger TW; Grace AA
    Synapse; 1993 Jul; 14(3):221-42. PubMed ID: 8105549
    [TBL] [Abstract][Full Text] [Related]  

  • 12. BDNF-modulated spatial organization of Cajal-Retzius and GABAergic neurons in the marginal zone plays a role in the development of cortical organization.
    Alcántara S; Pozas E; Ibañez CF; Soriano E
    Cereb Cortex; 2006 Apr; 16(4):487-99. PubMed ID: 16000651
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activity- and BDNF-induced plasticity of miniature synaptic currents in ES cell-derived neurons integrated in a neocortical network.
    Copi A; Jüngling K; Gottmann K
    J Neurophysiol; 2005 Dec; 94(6):4538-43. PubMed ID: 16293594
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronous oscillatory activity in immature cortical network is driven by GABAergic preplate neurons.
    Voigt T; Opitz T; de Lima AD
    J Neurosci; 2001 Nov; 21(22):8895-905. PubMed ID: 11698601
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Basic developmental rules and their implications for epilepsy in the immature brain.
    Ben-Ari Y
    Epileptic Disord; 2006 Jun; 8(2):91-102. PubMed ID: 16793570
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A network of fast-spiking cells in the neocortex connected by electrical synapses.
    Galarreta M; Hestrin S
    Nature; 1999 Nov; 402(6757):72-5. PubMed ID: 10573418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The emergence and properties of mutual synchronization in in vitro coupled cortical networks.
    Baruchi I; Volman V; Raichman N; Shein M; Ben-Jacob E
    Eur J Neurosci; 2008 Nov; 28(9):1825-35. PubMed ID: 18973597
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spike transmission and synchrony detection in networks of GABAergic interneurons.
    Galarreta M; Hestrin S
    Science; 2001 Jun; 292(5525):2295-9. PubMed ID: 11423653
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo.
    Minlebaev M; Ben-Ari Y; Khazipov R
    J Neurophysiol; 2007 Jan; 97(1):692-700. PubMed ID: 17093125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Functional and molecular development of striatal fast-spiking GABAergic interneurons and their cortical inputs.
    Plotkin JL; Wu N; Chesselet MF; Levine MS
    Eur J Neurosci; 2005 Sep; 22(5):1097-108. PubMed ID: 16176351
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.