These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 20338237)

  • 1. The RNA-binding protein Seb4/RBM24 is a direct target of MyoD and is required for myogenesis during Xenopus early development.
    Li HY; Bourdelas A; Carron C; Shi DL
    Mech Dev; 2010; 127(5-6):281-91. PubMed ID: 20338237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Repression of XMyoD expression and myogenesis by Xhairy-1 in Xenopus early embryo.
    Umbhauer M; Boucaut JC; Shi DL
    Mech Dev; 2001 Nov; 109(1):61-8. PubMed ID: 11677053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The RNA-binding protein Rbm24 is transiently expressed in myoblasts and is required for myogenic differentiation during vertebrate development.
    Grifone R; Xie X; Bourgeois A; Saquet A; Duprez D; Shi DL
    Mech Dev; 2014 Nov; 134():1-15. PubMed ID: 25217815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Early transcriptional targets of MyoD link myogenesis and somitogenesis.
    Maguire RJ; Isaacs HV; Pownall ME
    Dev Biol; 2012 Nov; 371(2):256-68. PubMed ID: 22954963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hes6 is required for MyoD induction during gastrulation.
    Murai K; Vernon AE; Philpott A; Jones P
    Dev Biol; 2007 Dec; 312(1):61-76. PubMed ID: 17950722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mef2d acts upstream of muscle identity genes and couples lateral myogenesis to dermomyotome formation in Xenopus laevis.
    Della Gaspera B; Armand AS; Lecolle S; Charbonnier F; Chanoine C
    PLoS One; 2012; 7(12):e52359. PubMed ID: 23300648
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Antagonistic role of XESR1 and XESR5 in mesoderm formation in Xenopus laevis.
    Kinoshita T; Haruta Y; Sakamoto C; Imaoka S
    Int J Dev Biol; 2011; 55(1):25-31. PubMed ID: 21425079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification and characterization of Xenopus kctd15, an ectodermal gene repressed by the FGF pathway.
    Takahashi C; Suzuki T; Nishida E; Kusakabe M
    Int J Dev Biol; 2012; 56(5):393-402. PubMed ID: 22811273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Xenopus msx-1 regulates dorso-ventral axis formation by suppressing the expression of organizer genes.
    Takeda M; Saito Y; Sekine R; Onitsuka I; Maeda R; Maéno M
    Comp Biochem Physiol B Biochem Mol Biol; 2000 Jun; 126(2):157-68. PubMed ID: 10874163
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cloning and characterisation of Myf5 and MyoD orthologues in Xenopus tropicalis.
    Fisher ME; Peck W; Branney PA; Pownall ME
    Biol Cell; 2003 Nov; 95(8):555-61. PubMed ID: 14630393
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Myogenic waves and myogenic programs during Xenopus embryonic myogenesis.
    Della Gaspera B; Armand AS; Sequeira I; Chesneau A; Mazabraud A; Lécolle S; Charbonnier F; Chanoine C
    Dev Dyn; 2012 May; 241(5):995-1007. PubMed ID: 22434732
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zygotic Wnt/beta-catenin signaling preferentially regulates the expression of Myf5 gene in the mesoderm of Xenopus.
    Shi DL; Bourdelas A; Umbhauer M; Boucaut JC
    Dev Biol; 2002 May; 245(1):124-35. PubMed ID: 11969260
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Repression through a distal TCF-3 binding site restricts Xenopus myf-5 expression in gastrula mesoderm.
    Yang J; Mei W; Otto A; Xiao L; Tao Q; Geng X; Rupp RA; Ding X
    Mech Dev; 2002 Jul; 115(1-2):79-89. PubMed ID: 12049769
    [TBL] [Abstract][Full Text] [Related]  

  • 14. XSu(H)2 is an essential factor for gene expression and morphogenesis of the Xenopus gastrula embryo.
    Ito M; Katada T; Miyatani S; Kinoshita T
    Int J Dev Biol; 2007; 51(1):27-36. PubMed ID: 17183462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Xenopus embryos regulate the nuclear localization of XMyoD.
    Rupp RA; Snider L; Weintraub H
    Genes Dev; 1994 Jun; 8(11):1311-23. PubMed ID: 7926732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determinants of myogenic specificity within MyoD are required for noncanonical E box binding.
    Heidt AB; Rojas A; Harris IS; Black BL
    Mol Cell Biol; 2007 Aug; 27(16):5910-20. PubMed ID: 17562853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The RSRF/MEF2 protein SL1 regulates cardiac muscle-specific transcription of a myosin light-chain gene in Xenopus embryos.
    Chambers AE; Logan M; Kotecha S; Towers N; Sparrow D; Mohun TJ
    Genes Dev; 1994 Jun; 8(11):1324-34. PubMed ID: 7926733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sim2 prevents entry into the myogenic program by repressing MyoD transcription during limb embryonic myogenesis.
    Havis E; Coumailleau P; Bonnet A; Bismuth K; Bonnin MA; Johnson R; Fan CM; Relaix F; Shi DL; Duprez D
    Development; 2012 Jun; 139(11):1910-20. PubMed ID: 22513369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of a dominant-negative Wnt blocks induction of MyoD in Xenopus embryos.
    Hoppler S; Brown JD; Moon RT
    Genes Dev; 1996 Nov; 10(21):2805-17. PubMed ID: 8946920
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An analysis of MyoD-dependent transcription using CRISPR/Cas9 gene targeting in Xenopus tropicalis embryos.
    McQueen C; Pownall ME
    Mech Dev; 2017 Aug; 146():1-9. PubMed ID: 28536000
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.