BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 20338755)

  • 1. Synthesis of thiol-functionalized spent grain as a novel adsorbent for divalent metal ions.
    Chai L; Li Q; Zhu Y; Zhang Z; Wang Q; Wang Y; Yang Z
    Bioresour Technol; 2010 Aug; 101(15):6269-72. PubMed ID: 20338755
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fast esterification of spent grain for enhanced heavy metal ions adsorption.
    Li Q; Chai L; Wang Q; Yang Z; Yan H; Wang Y
    Bioresour Technol; 2010 May; 101(10):3796-9. PubMed ID: 20110169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced removal of Hg(II) from acidic aqueous solution using thiol-functionalized biomass.
    Chai L; Wang Q; Li Q; Yang Z; Wang Y
    Water Sci Technol; 2010; 62(9):2157-66. PubMed ID: 21045345
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effective heavy metal removal from aqueous systems by thiol functionalized magnetic mesoporous silica.
    Li G; Zhao Z; Liu J; Jiang G
    J Hazard Mater; 2011 Aug; 192(1):277-83. PubMed ID: 21616588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid removal of heavy metal cations and anions from aqueous solutions by an amino-functionalized magnetic nano-adsorbent.
    Huang SH; Chen DH
    J Hazard Mater; 2009 Apr; 163(1):174-9. PubMed ID: 18657903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of synthesis of chelating resin silica-gel-supported diethylenetriamine and its removal properties for transition metal ions.
    Zhang Y; Qu R; Sun C; Chen H; Wang C; Ji C; Yin P; Sun Y; Zhang H; Niu Y
    J Hazard Mater; 2009 Apr; 163(1):127-35. PubMed ID: 18718715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chestnut shell as heavy metal adsorbent: optimization study of lead, copper and zinc cations removal.
    Vázquez G; Calvo M; Sonia Freire M; González-Alvarez J; Antorrena G
    J Hazard Mater; 2009 Dec; 172(2-3):1402-14. PubMed ID: 19716655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of solid waste sorption capacity for selected heavy metals in landfills.
    Suna Erses A; Fazal MA; Onay TT; Craig WH
    J Hazard Mater; 2005 May; 121(1-3):223-32. PubMed ID: 15885425
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a heavy metal sorption system through the P=S functionalization of coconut (Cocos nucifera) fibers.
    de Sousa DA; de Oliveira E; da Costa Nogueira M; Espósito BP
    Bioresour Technol; 2010 Jan; 101(1):138-43. PubMed ID: 19716694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of As, Ni, Zn, Cd, and Pb removals using treatment agents.
    Choi J; Yang JS; Park YT; Kim JO; Kim KJ; Shim YS; Kwon HH; Khan MA; Park JW; Um JG; Jeon BH
    Environ Technol; 2012; 33(4-6):445-54. PubMed ID: 22629616
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous determination of mercury, lead and cadmium ions in water using near-infrared spectroscopy with preconcentration by thiol-functionalized magnesium phyllosilicate clay.
    Li J; Zhang Y; Cai W; Shao X
    Talanta; 2011 May; 84(3):679-83. PubMed ID: 21482267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption performances and mechanisms of the newly synthesized N,N'-di (carboxymethyl) dithiocarbamate chelating resin toward divalent heavy metal ions from aqueous media.
    Jing X; Liu F; Yang X; Ling P; Li L; Long C; Li A
    J Hazard Mater; 2009 Aug; 167(1-3):589-96. PubMed ID: 19264406
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective heavy metals removal from waters by amorphous zirconium phosphate: behavior and mechanism.
    Pan B; Zhang Q; Du W; Zhang W; Pan B; Zhang Q; Xu Z; Zhang Q
    Water Res; 2007 Jul; 41(14):3103-11. PubMed ID: 17433402
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Highly effective adsorption of heavy metal ions by a thiol-functionalized magnesium phyllosilicate clay.
    Lagadic IL; Mitchell MK; Payne BD
    Environ Sci Technol; 2001 Mar; 35(5):984-90. PubMed ID: 11351546
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adsorption of Pb(II) from glucose solution on thiol-functionalized cellulosic biomass.
    Wu Z; Cheng Z; Ma W
    Bioresour Technol; 2012 Jan; 104():807-9. PubMed ID: 22130077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of transition metal ions from aqueous solutions by adsorption onto a novel silica gel matrix composite adsorbent.
    Yin P; Xu Q; Qu R; Zhao G
    J Hazard Mater; 2009 Sep; 169(1-3):228-32. PubMed ID: 19380193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review.
    Wan Ngah WS; Hanafiah MA
    Bioresour Technol; 2008 Jul; 99(10):3935-48. PubMed ID: 17681755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biosorption mechanism of nine different heavy metals onto biomatrix from rice husk.
    Krishnani KK; Meng X; Christodoulatos C; Boddu VM
    J Hazard Mater; 2008 May; 153(3):1222-34. PubMed ID: 18006228
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diethylenetriamine-grafted poly(glycidyl methacrylate) adsorbent for effective copper ion adsorption.
    Liu C; Bai R; Hong L
    J Colloid Interface Sci; 2006 Nov; 303(1):99-108. PubMed ID: 16919665
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highly efficient removal of heavy metals by polymer-supported nanosized hydrated Fe(III) oxides: behavior and XPS study.
    Pan B; Qiu H; Pan B; Nie G; Xiao L; Lv L; Zhang W; Zhang Q; Zheng S
    Water Res; 2010 Feb; 44(3):815-24. PubMed ID: 19906397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.