These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 20338765)
1. Bacillus thuringiensis: an impotent pathogen? Raymond B; Johnston PR; Nielsen-LeRoux C; Lereclus D; Crickmore N Trends Microbiol; 2010 May; 18(5):189-94. PubMed ID: 20338765 [TBL] [Abstract][Full Text] [Related]
2. Ecological consequences of ingestion of Bacillus cereus on Bacillus thuringiensis infections and on the gut flora of a lepidopteran host. Raymond B; Lijek RS; Griffiths RI; Bonsall MB J Invertebr Pathol; 2008 Sep; 99(1):103-11. PubMed ID: 18533180 [TBL] [Abstract][Full Text] [Related]
3. A mid-gut microbiota is not required for the pathogenicity of Bacillus thuringiensis to diamondback moth larvae. Raymond B; Johnston PR; Wright DJ; Ellis RJ; Crickmore N; Bonsall MB Environ Microbiol; 2009 Oct; 11(10):2556-63. PubMed ID: 19555371 [TBL] [Abstract][Full Text] [Related]
4. Fate of Bacillus thuringiensis strains in different insect larvae. Suzuki MT; Lereclus D; Arantes OM Can J Microbiol; 2004 Nov; 50(11):973-5. PubMed ID: 15644915 [TBL] [Abstract][Full Text] [Related]
5. Quantifying the reproduction of Bacillus thuringiensis HD1 in cadavers and live larvae of Plutella xylostella. Raymond B; Elliot SL; Ellis RJ J Invertebr Pathol; 2008 Jul; 98(3):307-13. PubMed ID: 18336832 [TBL] [Abstract][Full Text] [Related]
6. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Nielsen-LeRoux C; Gaudriault S; Ramarao N; Lereclus D; Givaudan A Curr Opin Microbiol; 2012 Jun; 15(3):220-31. PubMed ID: 22633889 [TBL] [Abstract][Full Text] [Related]
7. Safety and advantages of Bacillus thuringiensis-protected plants to control insect pests. Betz FS; Hammond BG; Fuchs RL Regul Toxicol Pharmacol; 2000 Oct; 32(2):156-73. PubMed ID: 11067772 [TBL] [Abstract][Full Text] [Related]
8. Are nematodes a missing link in the confounded ecology of the entomopathogen Bacillus thuringiensis? Ruan L; Crickmore N; Peng D; Sun M Trends Microbiol; 2015 Jun; 23(6):341-6. PubMed ID: 25818004 [TBL] [Abstract][Full Text] [Related]
10. Comparative analysis of the virulence of invertebrate and mammalian pathogenic bacteria in the oral insect infection model Galleria mellonella. Fedhila S; Buisson C; Dussurget O; Serror P; Glomski IJ; Liehl P; Lereclus D; Nielsen-LeRoux C J Invertebr Pathol; 2010 Jan; 103(1):24-9. PubMed ID: 19800349 [TBL] [Abstract][Full Text] [Related]
11. Phagocytic activity and encapsulation rate of Galleria mellonella larval haemocytes during bacterial infection by Bacillus thuringiensis. Dubovskiy IM; Krukova NA; Glupov VV J Invertebr Pathol; 2008 Jul; 98(3):360-2. PubMed ID: 18440019 [TBL] [Abstract][Full Text] [Related]
12. [Screening of Bacillus thuringiensis strains containing vip3A genes and analysis of gene conservation]. Chen JW; Tang LX; Song SY; Yuan MJ; Pang Y Sheng Wu Gong Cheng Xue Bao; 2003 Sep; 19(5):538-44. PubMed ID: 15969080 [TBL] [Abstract][Full Text] [Related]
13. Invasion of pests resistant to Bt toxins can lead to inherent non-uniqueness in genetically modified Bt-plant dynamics: mathematical modeling. Medvinsky AB; Gonik MM; Li BL; Velkov VV; Malchow H J Theor Biol; 2006 Oct; 242(3):539-46. PubMed ID: 16757001 [TBL] [Abstract][Full Text] [Related]
14. Tandem Mass Tag-Based Quantitative Proteomics and Virulence Phenotype of Hemolymph-Treated Bacillus thuringiensis kurstaki Cells Reveal New Insights on Bacterial Pathogenesis in Insects. Sun Y; Yang L; Rodríguez-Cabrera L; Ding Y; Leng C; Qiao H; Huang S; Kan Y; Yao L; Wright DJ; Li D; Ayra-Pardo C Microbiol Spectr; 2021 Oct; 9(2):e0060421. PubMed ID: 34704785 [TBL] [Abstract][Full Text] [Related]
15. Pathogenicity of intrathoracically administrated Bacillus thuringiensis spores in Blatta orientalis. Porcar M; Navarro L; Jiménez-Peydró R J Invertebr Pathol; 2006 Sep; 93(1):63-6. PubMed ID: 16777139 [TBL] [Abstract][Full Text] [Related]
16. The compatibility of a nucleopolyhedrosis virus control with resistance management for Bacillus thuringiensis: co-infection and cross-resistance studies with the diamondback moth, Plutella xylostella. Raymond B; Sayyed AH; Wright DJ J Invertebr Pathol; 2006 Oct; 93(2):114-20. PubMed ID: 16905146 [TBL] [Abstract][Full Text] [Related]
17. Using worms to better understand how Bacillus thuringiensis kills insects. Crickmore N Trends Microbiol; 2005 Aug; 13(8):347-50. PubMed ID: 15967665 [TBL] [Abstract][Full Text] [Related]
18. A novel metalloproteinase virulence factor is involved in Bacillus thuringiensis pathogenesis in nematodes and insects. Peng D; Lin J; Huang Q; Zheng W; Liu G; Zheng J; Zhu L; Sun M Environ Microbiol; 2016 Mar; 18(3):846-62. PubMed ID: 26995589 [TBL] [Abstract][Full Text] [Related]
19. Gene knockout demonstrates that vip3A contributes to the pathogenesis of Bacillus thuringiensis toward Agrotis ipsilon and Spodoptera exigua. Donovan WP; Donovan JC; Engleman JT J Invertebr Pathol; 2001 Jul; 78(1):45-51. PubMed ID: 11500093 [TBL] [Abstract][Full Text] [Related]