These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 20338839)

  • 1. Mass action stoichiometric simulation models: incorporating kinetics and regulation into stoichiometric models.
    Jamshidi N; Palsson BØ
    Biophys J; 2010 Jan; 98(2):175-85. PubMed ID: 20338839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards kinetic modeling of genome-scale metabolic networks without sacrificing stoichiometric, thermodynamic and physiological constraints.
    Chakrabarti A; Miskovic L; Soh KC; Hatzimanikatis V
    Biotechnol J; 2013 Sep; 8(9):1043-57. PubMed ID: 23868566
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A unifying modelling formalism for the integration of stoichiometric and kinetic models.
    Júlvez J; Oliver SG
    J R Soc Interface; 2020 Aug; 17(169):20200341. PubMed ID: 32752999
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MASSpy: Building, simulating, and visualizing dynamic biological models in Python using mass action kinetics.
    Haiman ZB; Zielinski DC; Koike Y; Yurkovich JT; Palsson BO
    PLoS Comput Biol; 2021 Jan; 17(1):e1008208. PubMed ID: 33507922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic simulation of regulatory networks using SQUAD.
    Di Cara A; Garg A; De Micheli G; Xenarios I; Mendoza L
    BMC Bioinformatics; 2007 Nov; 8():462. PubMed ID: 18039375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic analysis of integrated signaling, metabolic, and regulatory networks.
    Lee JM; Gianchandani EP; Eddy JA; Papin JA
    PLoS Comput Biol; 2008 May; 4(5):e1000086. PubMed ID: 18483615
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formalizing Metabolic-Regulatory Networks by Hybrid Automata.
    Liu L; Bockmayr A
    Acta Biotheor; 2020 Mar; 68(1):73-85. PubMed ID: 31342219
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The convex basis of the left null space of the stoichiometric matrix leads to the definition of metabolically meaningful pools.
    Famili I; Palsson BO
    Biophys J; 2003 Jul; 85(1):16-26. PubMed ID: 12829460
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulating genome-scale kinetic models in the post-genome era.
    Jamshidi N; Palsson BØ
    Mol Syst Biol; 2008; 4():171. PubMed ID: 18319723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated stoichiometric, thermodynamic and kinetic modelling of steady state metabolism.
    Fleming RM; Thiele I; Provan G; Nasheuer HP
    J Theor Biol; 2010 Jun; 264(3):683-92. PubMed ID: 20230840
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A kinetic model of Escherichia coli core metabolism satisfying multiple sets of mutant flux data.
    Khodayari A; Zomorrodi AR; Liao JC; Maranas CD
    Metab Eng; 2014 Sep; 25():50-62. PubMed ID: 24928774
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Detection of stoichiometric inconsistencies in biomolecular models.
    Gevorgyan A; Poolman MG; Fell DA
    Bioinformatics; 2008 Oct; 24(19):2245-51. PubMed ID: 18697772
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling metabolic networks for mammalian cell systems: general considerations, modeling strategies, and available tools.
    Gerdtzen ZP
    Adv Biochem Eng Biotechnol; 2012; 127():71-108. PubMed ID: 21984615
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing methods for metabolic network analysis and an application to metabolic engineering.
    Tomar N; De RK
    Gene; 2013 May; 521(1):1-14. PubMed ID: 23537990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Monostationarity and Multistationarity in Tree Networks of Goldbeter-Koshland Loops.
    Barabanschikov A; Gunawardena J
    Bull Math Biol; 2019 Jul; 81(7):2463-2509. PubMed ID: 31218553
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of rate law approximations in bottom-up kinetic models of metabolism.
    Du B; Zielinski DC; Kavvas ES; Dräger A; Tan J; Zhang Z; Ruggiero KE; Arzumanyan GA; Palsson BO
    BMC Syst Biol; 2016 Jun; 10(1):40. PubMed ID: 27266508
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The stability and robustness of metabolic states: identifying stabilizing sites in metabolic networks.
    Grimbs S; Selbig J; Bulik S; Holzhütter HG; Steuer R
    Mol Syst Biol; 2007; 3():146. PubMed ID: 18004279
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Systems analyses characterize integrated functions of biochemical networks.
    Gianchandani EP; Brautigan DL; Papin JA
    Trends Biochem Sci; 2006 May; 31(5):284-91. PubMed ID: 16616498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic hybrid models composed of mechanistic and simplified enzymatic rate laws--a promising method for speeding up the kinetic modelling of complex metabolic networks.
    Bulik S; Grimbs S; Huthmacher C; Selbig J; Holzhütter HG
    FEBS J; 2009 Jan; 276(2):410-24. PubMed ID: 19137631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model integration approach linking signalling and gene-regulatory logic with kinetic metabolic models.
    Ryll A; Bucher J; Bonin A; Bongard S; Gonçalves E; Saez-Rodriguez J; Niklas J; Klamt S
    Biosystems; 2014 Oct; 124():26-38. PubMed ID: 25063553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.