These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 2033950)
1. Influence of material properties on the mechanical behaviour of the L5-S1 intervertebral disc in compression: a nonlinear finite element study. Rao AA; Dumas GA J Biomed Eng; 1991 Mar; 13(2):139-51. PubMed ID: 2033950 [TBL] [Abstract][Full Text] [Related]
2. Validation and application of an intervertebral disc finite element model utilizing independently constructed tissue-level constitutive formulations that are nonlinear, anisotropic, and time-dependent. Jacobs NT; Cortes DH; Peloquin JM; Vresilovic EJ; Elliott DM J Biomech; 2014 Aug; 47(11):2540-6. PubMed ID: 24998992 [TBL] [Abstract][Full Text] [Related]
3. Patient-specific spine models. Part 1: Finite element analysis of the lumbar intervertebral disc--a material sensitivity study. Fagan MJ; Julian S; Siddall DJ; Mohsen AM Proc Inst Mech Eng H; 2002; 216(5):299-314. PubMed ID: 12365788 [TBL] [Abstract][Full Text] [Related]
4. Impact of material properties of intervertebral disc on dynamic response of the human lumbar spine to vertical vibration: a finite element sensitivity study. Guo LX; Fan W Med Biol Eng Comput; 2019 Jan; 57(1):221-229. PubMed ID: 30083805 [TBL] [Abstract][Full Text] [Related]
5. Mechanical response of a simple finite element model of the intervertebral disc under complex loading. Spilker RL; Daugirda DM; Schultz AB J Biomech; 1984; 17(2):103-12. PubMed ID: 6725290 [TBL] [Abstract][Full Text] [Related]
6. Numerical analysis of the influence of nucleus pulposus removal on the biomechanical behavior of a lumbar motion segment. Huang J; Yan H; Jian F; Wang X; Li H Comput Methods Biomech Biomed Engin; 2015; 18(14):1516-24. PubMed ID: 24893132 [TBL] [Abstract][Full Text] [Related]
7. Geometric and material property study of the human lumbar spine using the finite element method. Suwito W; Keller TS; Basu PK; Weisberger AM; Strauss AM; Spengler DM J Spinal Disord; 1992 Mar; 5(1):50-9. PubMed ID: 1571615 [TBL] [Abstract][Full Text] [Related]
8. Biomechanical responses of the intervertebral joints to static and vibrational loading: a finite element study. Cheung JT; Zhang M; Chow DH Clin Biomech (Bristol); 2003 Nov; 18(9):790-9. PubMed ID: 14527805 [TBL] [Abstract][Full Text] [Related]
9. Biomechanical and fluid flowing characteristics of intervertebral disc of lumbar spine predicted by poroelastic finite element method. Guo LX; Li R; Zhang M Acta Bioeng Biomech; 2016; 18(2):19-29. PubMed ID: 27406902 [TBL] [Abstract][Full Text] [Related]
10. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Acaroglu ER; Iatridis JC; Setton LA; Foster RJ; Mow VC; Weidenbaum M Spine (Phila Pa 1976); 1995 Dec; 20(24):2690-701. PubMed ID: 8747247 [TBL] [Abstract][Full Text] [Related]
11. Influence of structural and material property uncertainties on biomechanics of intervertebral discs - Implications for disc tissue engineering. Wang W; Zhou C; Guo R; Cha T; Li G J Mech Behav Biomed Mater; 2021 Oct; 122():104661. PubMed ID: 34252706 [TBL] [Abstract][Full Text] [Related]
12. A finite element model of the L4-L5-S1 human spine segment including the heterogeneity and anisotropy of the discs. Jaramillo HE; Gómez L; García JJ Acta Bioeng Biomech; 2015; 17(2):15-24. PubMed ID: 26415632 [TBL] [Abstract][Full Text] [Related]
13. Effect of Spiral Nucleus Implant Parameters on the Compressive Biomechanics of Lumbar Intervertebral Disc. Du CF; Liu CJ; Huang YP; Wang X World Neurosurg; 2020 Feb; 134():e878-e884. PubMed ID: 31733385 [TBL] [Abstract][Full Text] [Related]
14. Biomechanical investigation on the influence of the regional material degeneration of an intervertebral disc in a lower lumbar spinal unit: A finite element study. Masni-Azian ; Tanaka M Comput Biol Med; 2018 Jul; 98():26-38. PubMed ID: 29758454 [TBL] [Abstract][Full Text] [Related]
15. Dependence of mechanical behavior of the murine tail disc on regional material properties: a parametric finite element study. Hsieh AH; Wagner DR; Cheng LY; Lotz JC J Biomech Eng; 2005 Dec; 127(7):1158-67. PubMed ID: 16502658 [TBL] [Abstract][Full Text] [Related]
16. Strain changes on the cortical shell of vertebral bodies due to spine ageing: a parametric study using a finite element model evaluated by strain measurements. Lu Y; Rosenau E; Paetzold H; Klein A; Püschel K; Morlock MM; Huber G Proc Inst Mech Eng H; 2013 Dec; 227(12):1265-74. PubMed ID: 23990044 [TBL] [Abstract][Full Text] [Related]
17. Application of a new calibration method for a three-dimensional finite element model of a human lumbar annulus fibrosus. Schmidt H; Heuer F; Simon U; Kettler A; Rohlmann A; Claes L; Wilke HJ Clin Biomech (Bristol); 2006 May; 21(4):337-44. PubMed ID: 16439042 [TBL] [Abstract][Full Text] [Related]
18. A finite element study of a lumbar motion segment subjected to pure sagittal plane moments. Shirazi-Adl A; Ahmed AM; Shrivastava SC J Biomech; 1986; 19(4):331-50. PubMed ID: 3711133 [TBL] [Abstract][Full Text] [Related]
19. Stress analysis of the lumbar disc-body unit in compression. A three-dimensional nonlinear finite element study. Shirazi-Adl SA; Shrivastava SC; Ahmed AM Spine (Phila Pa 1976); 1984 Mar; 9(2):120-34. PubMed ID: 6233710 [TBL] [Abstract][Full Text] [Related]
20. The effect of fluid loss on the viscoelastic behavior of the lumbar intervertebral disc in compression. Lu YM; Hutton WC; Gharpuray VM J Biomech Eng; 1998 Feb; 120(1):48-54. PubMed ID: 9675680 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]