BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 20339850)

  • 1. Effect of temperature on spinal cord regeneration in the weakly electric fish, Apteronotus leptorhynchus.
    Sîrbulescu RF; Zupanc GK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2010 May; 196(5):359-68. PubMed ID: 20339850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural and functional regeneration after spinal cord injury in the weakly electric teleost fish, Apteronotus leptorhynchus.
    Sîrbulescu RF; Ilieş I; Zupanc GK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2009 Jul; 195(7):699-714. PubMed ID: 19430939
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spinal transection induces widespread proliferation of cells along the length of the spinal cord in a weakly electric fish.
    Allen AR; Smith GT
    Brain Behav Evol; 2012; 80(4):269-80. PubMed ID: 23147638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of caspase-3-mediated apoptosis during spinal cord regeneration in the teleost fish, Apteronotus leptorhynchus.
    Sîrbulescu RF; Zupanc GK
    Brain Res; 2009 Dec; 1304():14-25. PubMed ID: 19782669
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Stem-Cell-Driven Growth and Regrowth of the Adult Spinal Cord in Teleost Fish.
    Zupanc GKH
    Dev Neurobiol; 2019 May; 79(5):406-423. PubMed ID: 30829442
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recovery of locomotion correlated with axonal regeneration after a complete spinal transection in the eel.
    Doyle LM; Stafford PP; Roberts BL
    Neuroscience; 2001; 107(1):169-79. PubMed ID: 11744256
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Additive neurogenesis supported by multiple stem cell populations mediates adult spinal cord development: A spatiotemporal statistical mapping analysis in a teleost model of indeterminate growth.
    Sîrbulescu RF; Ilieş I; Meyer A; Zupanc GKH
    Dev Neurobiol; 2017 Nov; 77(11):1269-1307. PubMed ID: 28707354
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhibition of caspase-3-mediated apoptosis improves spinal cord repair in a regeneration-competent vertebrate system.
    Sîrbulescu RF; Zupanc GK
    Neuroscience; 2010 Dec; 171(2):599-612. PubMed ID: 20837106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Proteomic characterization of spontaneously regrowing spinal cord following injury in the teleost fish Apteronotus leptorhynchus, a regeneration-competent vertebrate.
    Sîrbulescu RF; Ilieş I; Amelung L; Zupanc GKH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2022 Nov; 208(5-6):671-706. PubMed ID: 36445471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calbindin-D
    Vitalo AG; Ilieş I; Zupanc GKH
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Aug; 205(4):595-608. PubMed ID: 31165281
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Absence of gliosis in a teleost model of spinal cord regeneration.
    Vitalo AG; Sîrbulescu RF; Ilieş I; Zupanc GK
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2016 Jun; 202(6):445-56. PubMed ID: 27225982
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ptena, but not Ptenb, reduces regeneration after spinal cord injury in adult zebrafish.
    Liu D; Yu Y; Schachner M
    Exp Neurol; 2014 Nov; 261():196-205. PubMed ID: 24929056
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovery of C-starts, equilibrium and targeted feeding after whole spinal cord crush in the adult goldfish Carassius auratus.
    Zottoli SJ; Freemer MM
    J Exp Biol; 2003 Sep; 206(Pt 17):3015-29. PubMed ID: 12878670
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spinal cord repair in regeneration-competent vertebrates: adult teleost fish as a model system.
    Sîrbulescu RF; Zupanc GK
    Brain Res Rev; 2011 Jun; 67(1-2):73-93. PubMed ID: 21059372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of morphogenetic potential of caudal spinal cord in Triturus carnifex adults (Urodele amphibians) subjected to repeated tail amputations.
    Margotta V; Filoni S; Merante A; Chimenti C
    Ital J Anat Embryol; 2002; 107(2):127-44. PubMed ID: 12113527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adult neurogenesis and neuronal regeneration in the central nervous system of teleost fish.
    Zupanc GK
    Brain Behav Evol; 2001; 58(5):250-75. PubMed ID: 11978945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transplants and neurotrophic factors increase regeneration and recovery of function after spinal cord injury.
    Bregman BS; Coumans JV; Dai HN; Kuhn PL; Lynskey J; McAtee M; Sandhu F
    Prog Brain Res; 2002; 137():257-73. PubMed ID: 12440372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. DHAM-BMSC matrix promotes axonal regeneration and functional recovery after spinal cord injury in adult rats.
    Liang H; Liang P; Xu Y; Wu J; Liang T; Xu X
    J Neurotrauma; 2009 Oct; 26(10):1745-57. PubMed ID: 19413502
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional recovery of paraplegic rats and motor axon regeneration in their spinal cords by olfactory ensheathing glia.
    Ramón-Cueto A; Cordero MI; Santos-Benito FF; Avila J
    Neuron; 2000 Feb; 25(2):425-35. PubMed ID: 10719896
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adeno-associated virus-mediated L1 expression promotes functional recovery after spinal cord injury.
    Chen J; Wu J; Apostolova I; Skup M; Irintchev A; Kügler S; Schachner M
    Brain; 2007 Apr; 130(Pt 4):954-69. PubMed ID: 17438016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.